Antiviral Activity Evaluation of Pyrazolo[4,3-e][1,2,4]triazines

MARIUSZ MOJZYCH

Department of Chemistry, University of Podlasie, ul. 3 Maja 54, 08-110 Siedlce, Poland. mojzych@ap.siedlce.pl

(Received on 26th April 2010, accepted in revised form 23rd December 2010)

Summary: The main purpose of this study is to screen synthesized pyrazolo[4,3-e][1,2,4]triazine derivatives for their antiviral activity against a panel of DNA and RNA viruses. Minimum cytotoxic and minimum virus-inhibitory concentrations of these compounds were determined.

Introduction

Despite of the wide range of spectroscopic biological activity the pyrazolo[4,3and e][1,2,4]triazines are a less known class in the group of condensed pyrazolotriazines [1-4]. Naturally occurring derivatives of this system were found as extracellular metabolites of cyanobacterium of the class Pseudomonas fluorescens var. pseudoiodinine and Nostoc spongiaeforme [1, 2, 4]. The most important members in this family of naturally purine analogs are pseudoiodinine [4], nostocine A^1 and fluviols $A-E^2$ (Fig. 1). Smirnova *et al.* studied the biological activity of fluviol A and its methyl derivatives fluviols C and E. The most active appeared to be fluviol E which inhibited the growth of Gram-positive and Gram-negative bacteria [5], and shown activity against fungi [2].

Fig. 1.

The structure of only two of such pigments *e.g.* nostocine A and fluviol A (normethylpseudoiodinine) have been conclusively determined by x-ray analysis [1, 4]. Moreover, Kelly *et al.* confirmed the structure of nostocine A and fluviol A by total synthesis and this study led to revision of the structure of pseudoiodinine which has been established as fluviol C [6]. There are few different methods described in the literature for the construction of pyrazolo[4,3-*e*][1,2,4]triazine ring. These methods can be divided into two groups, one incorporating the construction of the pyrazole ring onto the 1,2,4-triazine nucleus [7-10] and the second one including the building of the 1,2,4-triazine core on a pyrazole derivative [11-13]. Recently we have published a new approach to the synthesis and functionalization of pyrazolo[4,3-e][1,2,4]triazine skeleton [10, 14-16]. Taking into account possible biological usefulness, here we would like to report antiviral activity [17] of pyrazolo[4,3-e][1,2,4]triazine derivatives previously synthesized in our laboratory.

Results and Discussion

The synthesis and functionalization of pyrazolo[4,3-*e*][1,2,4]triazine derivatives were achieved by a convenient procedures depicted in Scheme 1. The synthetic route of pyrazolo[4,3e][1,2,4]triazine derivatives started with the synthesis of oximes 2, which were obtained in the reaction of 3-substituted 1,2,4-triazines 1 with nitroalkanes, according to published procedure [18]. In the next step, the readily available oximes 2 were converted into appropriate ketones 3 in good yields [19], which were subjected to the reaction with hydrazine or its derivatives in the presence of acidic media according to standard procedure to give suitable hydrazones 4 as intermediates for the preparation of pyrazolo[4,3e][1,2,4]triazine derivatives 5 [10, 16]. The resulting hydrazones were converted into a series of ring closured structures 5 under heating with catalytic amount of acid. We found that the mode of cyclocondensation is significantly dependent on the electronic nature of a phenyl ring substituent of the aromatic hydrazones: electron-donating substituents (Me, OMe) favor the cyclization in shorter time contrary to electron-withdrowing substituents (Cl, NO₂) which work favorable for the formation of pyrazolo[4,3-e][1,2,4]triazines in longer time. Further, we investigated high yielding procedure for the preparation of variously substituted pyrazolo[4,3e][1,2,4]triazines 5, based on the thermally-induced transformation of phenylhydrazones 4 (Scheme 1, R^3) = phenyl or substituted phenyl) in the presence of ptoluenesulfonic acid under solvent free conditions [16]. We bring into being that this method offers short reaction time, high yields of products and simple experimental procedure for both pyrazolotriazines with electron-donating and electron-withdrawing groups on the phenyl ring. Oximes of aldehyde 2 ($R^1 = Ph$, $R^2 = H$) can react with hydrazine or its derivatives in the presence of concentrated hydrochloric acid to give suitable pyrazolotriazines [15]. Moreover, this method seems to be general and allows introducing the substituents into pyrazole and triazine rings in the first step. We next explored the possibility of structural modification in 5-position of this condensed heteroaromatic ring system using *ipso*-nucleophilic substitution of methylsulfanyl group $(R^1=SCH_3)^{-18}$. Important to note, contrary to expectation methylsulfanyl group appeared to be uncreative towards nucleophiles. We have found that more effective nucleofugal group was methylsulfonyl substituent. Thus, sulfide **5** ($R^1 = SCH_3$, $R^2 = CH_3$, R^3 = Ph, CH₃, CH₂Ph) was smoothly transformed into corresponding sulfone upon the reaction with potassium manganate (VII) under phase transfer catalysis.

Scheme 1.

Nucleophilic substitution of methylsulfonyl group at the position 5 took place with O-, N- and Cnucleophiles to vield related substitution products in high yields [20, 21]. Oxidation of 5-hydrazino derivative 7 (Nu = NH-NH₂, $R^2 = CH_3$, $R^3 = Ph$, CH_3) with yellow mercury (II) oxide in refluxing ethanol gave the 5-unsubstituted pyrazolotriazine 8. Furthermore, hydrazine function was useful for the preparation of Schiff bases in the reaction with acetone or benzaldehyde [22]. Continuing our study voted to functionalization of pyrazolo[4,3e][1,2,4]triazine core we decided to made use of alkylation method [23]. As depicted in Scheme 1, N₁unsubstituted derivative 10 was prepared from the previously described 5-acyl-1,2,4-triazine and hydrazine hydrochloride in boiling ethanol. When the reaction took place at room temperature the intermediate compound was isolated, which was *N*,*N*'-bis-[1-(3-methylsulfanyl-[1,2,4]triazine-5-yl)ethylidene]hydrazine [21, 22]. Alkylation of the N_1 unsubstituted 10 ($R^1 = SCH_3$, $R^2 = CH_3$, $R^3 = H$) provided a mixture of 11 and 12 in high total yield. The ratio of the isomeric product 11 and 12 depends

on the reaction conditions: base and solvent. The

structures of evaluated compounds were established

by spectroscopic methods and already published

elsewhere[9, 14-16, 21-23, 25, 26].

Antiviral Activity

Synthesized previously pyrazolo[4,3e][1,2,4]triazines were evaluated for activity against several RNA- and DNA-viruses, using the following cell-based-assays: (a) Vero cells infected with parainfluenza-3 virus, reovirus-1, Sindbis virus, Coxsackie B4 virus, or Punta Toro virus; (b) human embryonic lung (HEL) fibroblasts infected with herpes simplex virus-1 (KOS), herpes simplex virus-2 (G), acyclovir-resistant herpes simplex virus-1 (KOS ACV^r TK⁻), vaccinia virus or vesicular stomatitis virus; (c) human epithelial (HeLa) cells infected with vesicular stomatitis virus, coxsackie B4 virus or respiratory syncytial virus and (d) Madin Darby canine kidney (MDCK) cells infected with influenza virus, subtype A/H1N1, A/H3N2 or B. Results are present in Table-1. As a results of broad spectrum antiviral screening of the derivatives, which had minimal antivirally effective concentration less than one-fifth of minimal cytotoxic concentration, were considered active. No antiviral effects were detected for any tested compound against any of the viruses evaluated.

Table-1: The minimum cytotoxic concentration of pyrazolo[4,3-e][1,2,4]triazines.

Compound	\mathbf{D}^1	\mathbf{P}^2	D ³	D ⁴	Nu	Minimum cytotoxic concentration (ug/mL) ^a			
Compound	ĸ	ĸ	ĸ	ĸ	nu	UFI	Voro	g/mL) HoLo	
59	Ph	н	н			100	100	100	
5a 5b	н	CH.	Ph			100	100	100	
50	Ph	CH.	n-CHPh			20	100	100	
5d	Ph	СЦ	p-CH ₂ -Ph			100	100	100	
50 50	Ph	CH.Br	<i>m</i> -C113-1 II Ph			100	20	20	
56 5f	Ph	CHBr.	Ph			4	20	20	
59	SCH.	C.H.				100	<u>∠</u> 4 100	100	
.5g 5h	SCH ₃					100	100	100	
51	SCH3		totrohydro 24 nyron 2 yl			100	100	≥100 >100	
51	50113		totrohydro 2H pyran 2 yl			2100	100	- 100	
0a 6b			CH COOM			100	100 \100	100	
70			Dh		CHICOOFA	20	/100	/100	
/a 7b			F II Ph			20	20	100	
70			I II Dh		3-1 II	100	20	100	
70 7d			F II Ph		o-cyanophenoi	100	100	100	
7u 7o			F II Ph			100	51	100	
76			I II Dh			20	>10	100	
71			ГШ DL		OCU CU NU	20	>20	100	
/g			F II DL			20	220	100	
/n 7:			Pfi Dh		NH ₂	100	220 100	≥20 100	
/1			PA		NH-PA	20	100	100	
7] 71-		CH ₃	Ph		NH-CH ₂ Ph	20	100	100	
7K		CH ₃	Ph		NH-(CH ₂) ₃ CH ₃	100	100	>100	
71		CH ₃	Ph		NH-NH ₂	4	100	4	
/m		CH ₃	Ph		NH-N=CHPh	20	100	100	
7n		CH ₃	Ph		NH-N=C(CH ₃) ₂	≥0.8	20	≥4	
70		CH ₃	CH ₂ Ph	CTT	NH-NH ₂	<u>≥0.8</u>	100	<u>≥</u> 4	
7p		CH ₃		CH ₃	NH-NH ₂	20	20	20	
/r		CH ₃	CH	CH ₂ COOMe	NH-N=CHPh	20	20	≥20 100	
8		CH ₃	CH ₃			20	20	100	
9	SCH ₃	CH ₃		GTL 60.014		≥100	≥100	100	
10a	SCH ₃	CH ₃		CH ₂ COOMe		>100	>100	>100	
10b	SCH ₃	CH ₃		$n-C_3H_7$		>100	100	>100	
10c	SCH ₃	CH ₃		$n-C_4H_9$		100	≥20	100	
11a	H	CH ₃		CH ₃		≥20	>100	>100	
116	SO ₂ CH ₃	CH ₃		CH ₃		≥20	100	100	
11c	OC_2H_5	CH ₃		CH ₃		100	100	>100	

Table-L. Commucu.	Table-1	: Continue	d
-------------------	---------	------------	---

						Minimum cytotoxic concentration				
Compound	\mathbf{R}^{1}	\mathbf{R}^2	\mathbb{R}^3	\mathbf{R}^{4}	Nu	(µg/mL) ^a				
						HEL	Vero	HeLa		
11d	SCH ₃	CH ₃		C ₂ H ₅		>100	100	>100		
11e	SCH ₃	CH ₃		C4H9		>100	100	≥100		
11f	SCH ₃	CH ₃		CH ₂ CH ₂ CH=CH ₂		≥100	100	>100		
11g	SCH ₃	CH ₃		CH ₂ Ph		100	100	>100		
DS-5000						-	>100	>100		
(S)-DHPA						-	>250	>250		
Ribavirin						>250	>250	>250		
Brivudin						>250	-	-		
Cidofovir						>250	-	-		
Ganciclovir						>100	-	-		

^aRequired to cause a microscopically detectable alteration of normal cell morphology.

Antiviral Activity Assay

The compounds were evaluated against the following viruses: herpes simplex virus type 1 (HSV-1) strain KOS, thymidine kinase deficient (TK⁻) HSV-1 KOS strain resistant to ACV (ACV^r). Herpes simplex virus type 2 (HSV-2) strains Lyons and G, vaccinia virus Lederle strain, respiratory syncytial virus (RSV) strain Long, Vesicular stomatitis virus (VSV), Coxackie B4, Parainfluenza-3, Reovirus-1, Sindbis, Punta Toro, influenza virus Type A (H1N1, H3N2) and type B and feline corona virus. The antiviral assays were based on inhibition of virusinduced cytopathicity in human embryonic lung (HEL) fibroblasts, African green monkey cell (Vero), human epithelial cervix carcinoma cells (HeLa), Crandel feline kidney cells (CFKC) and Madin-Derby canine kidney cells (MDCK). Briefly, confluent cell cultures in microtiter 96-well plates were inoculated with 100 CCID₅₀ of virus, one CCID₅₀ being the virus dose to infect 50% of the cell cultures. After a 1-2 h adsorption period, residual virus was removed, and the cell cultures were

incubated in the presence of varying concentrations of the test compounds. Viral cytopathicity was recorded as soon as it reached completion in the control virus-infected cell cultures that were not treated with the test compounds.

Conclusion

The results of antiviral activity of the tested compounds are shown in Table-2. None of the compounds exhibited specific antiviral activity, which means that they did not inhibit replication (formation of viral cytopathogenicity) of any viruses tested at a concentration that was \geq 5-fold lower than the minimum cytotoxic concentration.

Acknowledge

The author is grateful to Prof. Jan Balzarini from Riga Institute for Medical Research, Katholieke Universiteit Leuven Minderbroedersstraat 10, B-3000 Leuven, Belgium for antiviral evaluation of pyrazolo[4,3-e][1,2,4]triazines.

Table-2: Antiviral activity of compounds in HEL, HeLa an Vero cell cultures.

		Min. inhibitory conc. ^a (µg/mL)											
			HEL					Vero				HeLa	
Compound	Herpes Simplex Virus- 1(KOS)	Herpes Simplex virus- 2 (G)	Vaccinia virus	Vesicular Stomatitis virus	Herpes Simplex virus-1 KOS ACV ^r (TK ⁻)	Para-Influenza -3 virus	Reovirus- 1	Sindbis virus	Coxsackie Virus B4	Punta Toro virus	Vesicular Stomatitis virus	Coxsackie Virus B4	Respiratory Syncytial virus
5a	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
5b	>20	>20	>20	>20	>20	>20	>20	>20	>20	20	>20	>20	>20
5c	>4	>4	>4	>4	>4	>20	>20	>20	>20	>20	>20	>20	>20
5d	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
5e	>0.8	>0.8	>0.8	>0.8	>0.8	>4	>4	>4	>4	>4	>4	>4	>4
5f	>0.8	>0.8	>0.8	>0.8	>0.8	>4	>4	>4	>4	>4	>0.8	>0.8	>0.8
5g	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
5h	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>100	>100	>100
5i	>100	>100	>100	>100	>100	>20	>20	>20	>20	>20	>100	>100	>100
6a	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
6b	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100
7a	>4	>4	>4	>4	>4	>20	>20	>20	>20	>20	>20	>20	>20
7b	>20	>20	>20	>20	>20	>4	>4	>4	>4	>4	>20	>20	>20
7c	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
7d	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
7e	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	20	>20	>20
7f	>4	>4	>4	>4	>4	>20	>20	>20	>20	>20	>20	>20	>20
7g	>4	>4	>4	>4	>4	>20	>20	>20	>20	>20	>20	>20	>20
7h	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20
7i	>4	>4	>4	>4	>4	>20	>20	>20	>20	>20	>20	>20	>20
7j	>4	>4	>4	>4	>4	>20	>20	>20	>20	>20	>20	>20	>20

	Min. inhibitory conc. "(µg/mL)													
			HEL					Vero			HeLa			
Compound	Herpes Simplex Virus- 1(KOS)	Herpes Simplex virus- 2 (G)	Vaccinia virus	Vesicular Stomatitis virus	Herpes Simplex virus-1 KOS ACV ^r (TK ⁻)	Para-Influenza -3 virus	Reovirus- 1	Sindbis virus	Coxsackie Virus B4	Punta Toro virus	Vesicular Stomatitis virus	Coxsackie Virus B4	Respiratory Syncytial virus	
7k	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>100	>100	>100	
71	0.8	>0.8	>0.8	>0.8	>0.8	>20	>20	>20	>20	>20	>0.8	>0.8	>0.8	
7m	>4	>4	>4	>4	>4	>20	>20	>20	>20	>20	>20	>20	>20	
7n	>0.8	>0.8	>0.8	>0.8	>0.8	>4	>4	>4	>4	>4	>4	>4	>4	
70	>0.8	>0.8	>0.8	>0.8	>0.8	>20	>20	>20	>20	>20	>4	>4	>4	
7p	>4	>4	>4	>4	>4	>4	>4	>4	>4	>4	>4	>4	>4	
7 r	>4	>4	>4	>4	>4	>4	>4	>4	>4	>4	>20	>20	>20	
8	>4	>4	>4	>4	>4	>4	>4	>4	>4	>4	>20	>20	>20	
9	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>20	>20	>20	
10a	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	>100	
10b	>100	>100	>100	>100	>100	>20	>20	>20	>20	>20	50	>100	>100	
10c	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	
11a	>20	>20	>20	>20	>20	>100	>100	>100	>100	>100	>100	>100	>100	
11b	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	
11c	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>100	>100	>100	
11d	>100	>100	>100	>100	>100	>20	>20	>20	>20	>20	>100	>100	>100	
11e	>100	>100	>100	>100	>100	>20	>20	>20	>20	>20	>100	>100	>100	
11f	>100	>100	>100	>100	>100	>20	>20	>20	>20	>20	>100	>100	>100	
11g	>20	>20	>20	>20	>20	>20	>20	>20	>20	>20	>100	>100	>100	
DS-5000	-	-	-	-	-	>100	>100	59	>100	9	12	100	0.5	
(S)-DHPA	-	-	-	-	-	>250	>250	>250	>250	>250	250	>250	>250	
Ribavirin	>250	>250	>250	126	>250	112	>250	>250	>250	112	22	146	29	
Brivudin	0.04	126	4	>250	250	-	-	-	-	-	-	-	-	
Cidofovir	1	4	3	>250	4	-	-	-	-	-	-	-	-	
Ganciclovir	0.06	0.03	>100	>100	2	-	-	-	-	-	-	-	-	
Required to t	require virus	 induced cv 	TODATDOGED10	11V DV 50%										

References

- K. Hirata, H. Nakagami, J. Takashina, T. Mahmud, M. Kobayashi, Y. In, T. Ishida, K. Miyamoto, *Heterocycles*, 43, 1513 (1996).
- V. V. Smirnov, E. A. Kiprianova, A. D. Garagulya, S. E. Esipov, S. A. Dovjenko, *FEMS Microbiology Lett.*, **153**, 357 (1997); *Chem Abstr*, **127**, 1997, 231635t.
- 3. V. Galasso, Chem. Physics Lett., **472**, 237 (2009).
- H. J. Lindner, G. Schaden, *Chem. Ber.*, 105, 1949 (1972).
- M. A. Abbasi, S. H. Ali, M. Ashfaq, Aziz-Ur-Rehman M. Jahangir, M. Z. Qureshi, S. Z. Siddiqui and V. U. Ahmad, *Journal of the Chemical Society of Pakistan*, **32**, 172 (2010).
- T. Ross Kelly, E. L. Elliott, R. Lebedev, J. Pagalday, *Journal of the American Chemical Society*, **128**, 5646 (2006).
- K. Nalepa, J. Slouka, *Pharmazie*, 39, 504 (1984).
- M. Z. A. Badr, M. M. Aly, Z. H. Khalil, A. A. Attalla, *Indian J Chem*, 21B, 115 (1982).
- 9. K. Nalepa, T. Guky, Acta Univ Palacki Olomuc Fac Rer Nat Chemica, 40, 49 (2001).
- A. Rykowski, M. Mojzych, Z. Karczmarzyk, *Heterocycles*, 53, 2175 (2000).
- M. S. K. Youssef, K. M. Hassan, F. M. Atta, M. S. Abbady, *J. Heterocycl. Chem.*, **21**, 1565 (1984).

- A. K. Abu Safieh, A. M. Abu Mahthieh, M. M. El-Abadelah, M. T. Ayoub, W. Voelter, *Monatshefte für Chemie*, **138**, 157 (2007).
- 13. M. H. Elnagdi, M. R. H. Elmoghayer, H. A. Elfaham, M. M. Sallam, H. H. Alnima, J. *Heterocyclic Chem.*, **17**, 209 (1980).
- M. Mojzych, A. Rykowski, J. Wierzchowski, *Molecules*, 10, 1298 (2005).
- 15. M. Mojzych M & Rykowski A, *Heterocyclic Commun.*, **12**, 191 (2006).
- M. Mojzych M. & Rykowski A, J. Heterocyclic Chem., 44, 1003 (2007).
- 17. Z. O. Ozdemir, M. Karahan, E. Karabulut, Z. Mustafaeva, *Journal of the Chemical Society* of Pakistan, **32**, 531 (2010).
- A. Rykowski, M. Mąkosza, *Tetrahedron Lett.*, 25, 4795 (1984).
- 19. A. Rykowski, T. Lipińska, *Synth Commun*, **26**, 4409 (1996).
- M. Mojzych, A. Rykowski, *Heterocycles*, 63, 1829 (2004).
- 21. M. Mojzych, Molbank, M415 (2005).
- 22. M. Mojzych, Molbank, M414 (2005).
- 23. M. Mojzych, A. Rykowski, *Polish J Chem*, **77**, 1797 (2003).
- M. Mojzych, Z. Karczmarzyk, Z. Urbańczyk-Lipkowska, P. Kalicki, *Acta Cryst E*, E65, 01772 (2009).
- 25. M. Mojzych, Molbank, M432 (2005)
- M. Mojzych, A. Rykowski, *Heterocycles*, **71**, 2449 (2007).