Xanthine Oxidase Inhibition by 5-aryledene N,N'-dimethylbarbituric Acid Derivatives

¹KHALID MOHAMMED KHAN*, ^{1,2}MOMIN KHAN, ¹ANEELA KARIM, ^{1,5}MUHAMMAD TAHA, ¹NIDA AMBREEN, ^{1,3}ANAR GOJAYEV, ⁴SHAHNAZ PERVEEN AND ¹MUHAMMAD IQBAL CHOUDHARY

¹H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University Karachi, Karachi-75270, Pakistan

²Department of Chemistry, Abdul Wali Khan University, Mardan-23200, Khyber Pakhtunkhwa, Pakistan ³Baku State University, Z. Khalilov Street 23, AZ 1148, Baku, Azerbaijan

⁴PCSIR Laboratories Complex, Karachi, Shahrah-e-Dr. Salimuzzaman Siddiqui, Karachi-75280, Pakistan

⁵Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam

Campus, 42300 Bandar Puncak Alam, Selangor, Malavsia.

hassaan2@super.net.pk; khalid.khan@iccs.edu

(Received on 13th September 2012, accepted in revised form 23rd January 2013)

Summary: *N*,*N*'-dimethylbarbituric acid derivatives **1-24** were evaluated for their xanthine oxidase (XO) inhibitory activity. Majority of these compounds showed a good to moderate *in vitro* xanthine oxidase inhibitory activity ($IC_{50} = 20.97 \pm 0.29 - 327.0 \pm 3.50 \mu$ M), while eight compounds were found to be completely inactive. A structure-activity relationship has been discussed, identifying structural features, responsible for varying degree of activity.

Keywords: Xanthine oxidase inhibition, N,N'-dimethylbarbituric acid derivatives, gout, antioxidants.

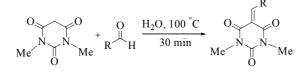
Introduction

Xanthine oxidase (XO) catalyzes the hydroxylation of hypoxanthine and xanthine, last two steps in the formation of urate. During the past decade, numerous studies have suggested that XO plays an important role in ischemic and other types of tissue and vascular injuries, chronic heart failure, hyperuricemia and inflammatory diseases [1-4]. The hyperuricemia can lead to hypertension, hyperlipidaemia, cancer, diabetes, and obesity [5]. The most effective treatment of gout is reduction in the uric acid production by inhibition of XO or increasing the excretion of uric acid. The xanthine oxidase (XO) inhibitors are not only useful, but they also possess lesser side effects as compared to uricosuric and anti-inflammatory agents. Allopurinol is the only clinically used XOI since last three decades, which unfortunately suffers from some adverse effects, such as renal toxicity, hypersensitivity syndrome and Stevens-Johnson syndrome [6]. Therefore the search for new and safe XOI for the treatment of gout and various other diseases is urgently required.

The first barbituric acid was synthesized in 1864 by Adolph von Baeyer [7]. Word "barbiturate" is based on the combination of the words Barbara and urea [7]. Barbituric acid itself is hypnotically inactive, but substitution at C-5 of the barbiturate ring makes these analogs active as central nervous system depressants. Diethylbarbituric acid, the first hypnotically active barbiturate, was synthesized in 1903 [8]. Since then over 2,500 barbiturates have been synthesized [9, 10]. Pentobarbtione and thiopentone were synthesized in 1930 and 1932, respectively [11]. Seventy years later, they remain the two most commonly used barbiturates for the management of acute neurological and neurosurgical emergencies. Basically, barbiturates exhibit their anesthetic as well as sedative properties by enhancing the action of c-aminobutyric acid (GABA) at the GABAA receptor [12-18]. *In vitro* neuroprotective effects including inhibition of presynaptic glutamate release [19, 20], attenuation of post-synaptic glutamate activity at NMDA and AMPA-receptors [19, 21], calcium accumulation inhibition in synaptosomes [22], and nitric-oxide induced cytotoxicity inhibition [23].

In the present study, we synthesized a series of N,N'-dimethylbarbituric acid derivatives **1-24**, structurally close to allopurinol (**25**), with one of its rings resembled to barbituric acid (Fig. 1). These derivatives were then screened for their *in vitro* xanthine oxidase (XO) inhibitory activity, and some encouraging results are obtained

Allopurinol (25) N,N-Dimethylbarbituric acid derivatives 1-24


Fig. 1: Resemblance of barbituric acid derivatives (1-24) with allopurinol (25)

^{*}To whom all correspondence should be addressed.

Results and Discussion

Chemistry

N.N'-Dimethylbarbituric acid derivatives 1-24 were prepared from N,N'-dimethylbarbituric acid by condensing with appropriate aromatic aldehydes in water under reflux conditions in high yields (Scheme-1). In a typical reaction, Appropriated aldehydes (1.56 mmol, 1 eq.) and N,N'-dimethylbarbituric acid (0.2 g, 1.56 mmol) were suspended in distilled water (10 mL) at room temperature. This mixture was heated up to reflux for 30 minutes with continuous monitoring through TLC. When reaction was completed (TLC analysis), solid products were filtered. The crude products were washed with cold water and then ether. After washing, the solid products were dried in a desiccator under vacuum and collected as fluffy solids. The structures of 1-24 were elucidated by using different spectroscopic techniques *i.e.* ¹H-NMR and EI-MS [24].

Scheme-1: Synthetic route for barbituric acid derivatives 1-24.

Bioactivity

Xanthine oxidase (XO) is involved in metabolic pathway towards uric acid formation. XO can act on certain purines, pterins, and aldehydes [25]. It can efficiently catalyzes the conversion of 1methylxanthine (a metabolite of caffeine) to 1methyluric acid, but has low activity on 3methylxanthine. The xanthine oxidase (XO) inhibitor, allupurinol, is used in the treatment of gout [26].

Based on the structure of allopurinol, *N*,*N*'dimethylbarbituric acid derivatives **1-24** were synthesized and screened for their xanthine oxidase inhibitory potential. The basic hypothesis was that an amide bond and a six member aromatic ring in the allupurinol and barbituric acid, respectively, may exhibit inhibitory potential against the xanthine oxidase. Amongst the *N*,*N*'-dimethylbarbituric acid derivatives **1-24**, sixteen showed a good to moderate xanthine oxidase inhibiting potential with IC₅₀ values in the range of $20.97 \pm 0.29 - 327.0 \pm 3.50 \,\mu$ M, while eight were found to be completely inactive. Limited SAR suggests that the XO inhibitory activity of **1-24** largely depends on the substitution on phenyl ring and other structural features. Compound **16** without any substitution on phenyl residue showed an IC₅₀ value $327.0 \pm 3.5 \,\mu$ M, and found to be least active among the sixteen active derivatives.

Table-1: Synthetic derivatives 5-aryledene N,N'-dimethyl barbituric acid (1-24).

1-24					
Comp. No.	R	IC ₅₀ ± SEM ^a µM	Comp. No.	R	$IC_{50} \pm SEM^{a}$ μM
1	6 5 Cl	20.97 ± 0.29	13	${}^{6}_{5} \bigcup_{Cl}^{2}_{3}$	196.34 ± 1.01
2	S OH OH OH	24.25 ± 0.50	14	Me 4 3 OH	233.8 ± 5.50
3	6 5 4 NO ₂	26.94 ± 1.01	15	6 5 4 4 OEt	$\textbf{278.8} \pm \textbf{1.41}$
4	⁶ ⁵ ⁴ OEt	41.00 ± 1.50	16	$6 \underbrace{\begin{array}{c} & 1 \\ & 5 \end{array}}_{4}^{2} \frac{2}{3}$	327.0 ± 3.50
5	$5 \frac{1}{100} $	$\textbf{70.19} \pm \textbf{1.8}$	17	6 5 OH	NA
6	6 5 4 NO ₂	71.49 ± 0.53	18	⁶ 5 OH	NA
7	$5 \xrightarrow{6} 3$	75.03 ± 2.00	19	6 5 OH	NA
8	⁶ 5 4 OH OMe	93.70 ± 2.30	20	$5 \xrightarrow{1}{0} 1$ $5 \xrightarrow{2}{0} 3$	NA
9		98.90 ± 1.01	21	6 5 OMe	NA
10	6 5 OH	118.22 ± 0.84	22	MeO OMe	, NA
11	2 3 4 5 6	120.5 ± 0.19	23	$5 \xrightarrow{1}{3} S \xrightarrow{1}{S-Me}$	NA
12		125.5 ± 2.05	24	⁶ ⁵ ² ³ ³ ² ³ ³ ⁴ ⁶	NA
25	Allopurinol	13.70 ± 0.15		1410 1410	

^aSEM = Standard Error of Mean

The most active compound 1 with an IC_{50} value $20.97 \pm 0.29 \ \mu M$ possess two chloro residues at ortho and para positions of the phenyl ring of the barbituric acid. Comparing the activity of compound 1 with the other dichloro substituted (*meta* and *para*) compound 9 (IC₅₀ = 98.90 \pm 1.01 μ M) indicated that the change in the position of one of the chloro groups (ortho to meta) sharply decrease the XO inhibitory activity. On the other hand, elimination of one of the chloro groups from ortho position as in compounds **12** (IC₅₀ = 125.5 \pm 2.05 μ M) and **13** (IC₅₀ = 196.34 \pm 1.01 μ M) also decrease the XO inhibitory activity. This difference in activity of compounds 1, 9, 12, and 13 suggested that the position and nature of substituent at phenyl ring are responsible for varying activity. By changing the para-chloro of compound 13 with *para*-bromo group, as in compound 7 (IC₅₀ = $75.03 \pm 2.00 \ \mu$ M), increases the inhibitory potential. Lack of access to suitable precursors to synthesize other bromine substituted compounds did not allow us to study SAR of bromo derivatives.

Compound 2 (IC₅₀ = 24.25 \pm 0.50 μ M) found to be second most active compound of the series with ortho, meta, and para tri-hydroxyl phenyl residues, suggesting that three hydroxyl groups may be responsible for xanthine oxidase inhibitory activity. When one of the hydroxyl groups was eliminated, as in compounds 17 and 18, both of them lost their inhibitory potential, indicating that -OH at ortho, meta and para positions are essential for the activity of the molecules. When ortho and meta positions of phenyl ring were substituted with hydroxyl and ethoxy groups, respectively, as in compound 4, it showed a good inhibitory potential $(IC_{50} = 41.00 \pm 1.50 \ \mu M)$. However, when in compound 19, OH group moved from ortho position, to para position, maintaining the ethoxy group at meta position, a total loss of activity was observed. In compound 8, when ethoxy was substituted with a OCH₃ residue, a reduction in activity was observed (IC₅₀ value 93.70 \pm 2.30 μ M), as compared to its parent compound 4, hence indicating that replacement of a OH along with a OCH₃ group at a suitable position play a role in the activity. When we compared the activity of compound 14 with ortho hydroxyl and meta methyl, a very weak inhibitory activity was observed (IC₅₀ = 233.8 \pm 5.50 μ M) further indicating the importance of the hydroxyl at a suitable position. This initial inference was also supported by compound 15 with only ethoxy substitution at *ortho* position (IC₅₀ = 278.8 ± 1.41 μ M) displaying a very weak activity, as compared to compound 4. The activity of compound 15 also indicates that the position of ethoxy is also an important contributor to activity. When ethoxy group

is shifted to *para* position, as in compound **20**, activity is totally lost. When phenyl was replaced with the bicyclic naphthalene, a good activity (IC₅₀ = $120.5 \pm 0.19 \ \mu$ M) was observed. Compounds **21** and **22**, with two and three methoxy substituents, demonstrated no activity against the enzyme. *Para* sulfide containing compound **23** and *para N*,*N*'-dimethyl substituted phenyl compound **24** were also found to be inactive.

Compound **3** with an *ortho*-nitro on phenyl ring showed a lower IC₅₀ = 26.94 ± 1.01 μ M, as compared to its *para* nitro analog (compound **5**) (IC₅₀ = 70.19 ± 1.8 μ M), while the nitro group at *meta* position (compound **6**) leads to a slight decrease in activity (IC₅₀ = 71.49 ± 0.53 μ M), suggesting that - NO₂ at suitable disposition contributes in activity.

This limited structure-activity relationship (SAR) showed that the substituents on phenyl ring (nitro, chloro, bromo, hydroxyl and ethoxy) play important role in the xanthine oxidase enzyme inhibition potential of N,N'-dimethylbarbituric acid derivatives.

Experimental

Xanthine Oxidase Inhibition Assay In Vitro

The XO inhibitory activity of test compounds was determined by measuring the rate of hydroxylation of the substrate (xanthine) into uric acid, which is a colorless end product of the reaction and shows absorption at 295 nm [25]. Briefly, the reaction mixture containing 10 μ L of 1 mmol/L pure sample was dissolved in DMSO, 150 μ L of phosphate buffer (0.05 mol/L, pH 7.4), 0.003 units of xanthine oxidase dissolved in buffer (20 μ L), and 20 μ L of 0.1 mmol/L xanthine as substrate for enzyme. After addition of xanthine oxidase, the mixture was incubated for 10 min at room temperature and preread in the UV region (λ max 295 nm). The substrate was added to the reaction mixture, and final readings were carried out for 15 min at an interval of 1 min (Spectra MAX-340). The percentage inhibitory activity by the samples were determined against a DMSO blank, and calculated by using the following formula.

Inhibition (%) = $100 - [(OD \text{ test compound }/OD \text{ control}) \times 100]$

The IC₅₀ of the compounds was calculated by using EZ-Fit windows-based software (Perrella Scientific Inc. Amherst, USA). To compare the inhibitory activities of the compounds, allopurinol (Sigma/Aldrich Catalogue # A8003) was used as

KHALID MOHAMMED KHAN et al.,

standard and each compound was assayed in triplicate.

General Procedure for the Synthesis of 5-arylidene Barbiturates 1-24

N,N'-Dimethyl barbituric acid (1.56 mmol) and corresponding aldehyde (1.56 mmol, 1 eq.) were dissolved in 10 mL of distilled water and the mixture was refluxed for 30 minutes. In all cases, solid product were formed which were filtered, washed with cold water and ether and dried under vacuum. The pure compounds **1-24** were obtained as fluffy solids having satisfactory physical and spectroscopic data [24].

Conclusion

Using allopurinol as the minimum pharmacophore, a library of twenty-four derivatives was evaluated for their in vitro xanthine oxidase inhibitory activity. Out of them, sixteen N,N'dimethylbarbituric acid derivatives showed a good to moderate in vitro xanthine oxidase inhibitory activity, while eight compounds were found to be completely inactive. Conclusively, current study suggests that N,N'-dimethylbarbituric acid derivatives may have potential to inhibit xanthine oxidase enzyme, however, an extensive work in connection of refining the structures of these molecules is required.

Acknowledgments

The authors are thankful to OPCW, Netherland, and Higher Education Commission (HEC) Pakistan (Project No. 20-2073) for their financial supports.

References

- C. E. Berry and J. M. Hare, *Journal of Physiology* (London), 555, 589 (2004).
- R. Harrison, Free Radical Biology and Medicine, 33, 774 (2002).
- K. M. Khan, N. Ambreen, U. R. Mughal, S. Jalil, S. Perveen, M. I. Choudhary, *European Journal* of Medicinal Chemistry 45, 4058 (2010).
- 4. R. Harrison, *Drug Metabolism Reviews*, **36**, 363 (2004).
- K. C. Lin, H.Y. Linm and P. Chou, *Journal of Rheumatology*, 27, 1501 (2000).
- A. Burke, E. Smyth, G. A. FitzGerald, Analgesicantipyretic agents; pharmacotherapy of gout. In: L. L. Brunton, J. S. Lazo, K. L. Parker, (Eds.), The pharmacological basis of therapeutics, 11th ed. McGraw. Hill Medical Publishing Division, New York, 2006, pp. 706-710.
- J. W. Dundee and P. D. A. McIlroy, *Anaesthesia*, 37, 726 (1982).

- S. C. Harvey, Hypnotics and sedatives. The barbiturates. In: L. S. Goodman, A. Gilman (eds) The pharmacological basis of therapeutics. 5th ed. Macmillan, New York (1975) p.102.
- a) K. M. Khan, M. Ali, T. A. Farooqui, M. Khan, M. Taha and S. Perveen, *Journal of Chemical Society of Pakistan*, **31**, 823 (2009). b) S. Perveen, S. Mustafa and K. M. Khan, *Journal of Chemical Society of Pakistan*, **32**, 229 (2010).
- 10. M. Willow and G. A. R. Johnston, *International Review of Neurobiology*, **24**, 15 (1983).
- 11. J. W. Dundee, *Br. Journal of Anaesthesia*, **56**, 211 (1984).
- N. Akaike, K. Hattori, N. Inomata and Y. Oomura, *Journal of Physiology*, 360, 367 (1985).
- N. Akaike, T. Maruyama and N. Tokutomi, Journal of Physiology, 394, 85 (1987).
- 14. J. M. H. French-Mullen, J. L. Barker and M. A. Rogawski, *Journal of Neurosciences*, **13**, 3211 (1993).
- 15.L. Y. M. Huang and J. L. Barker, *Science*, **207**, 195 (1980).
- 16.F. Leeb-Lundberg and R. W. Olsen, *Molecular Pharmacology*, **21**, 320 (1982).
- 17. J. A. Peters, E. F. Kirkness, H. Callachan, J. Lambert and A. J. Turner, *Br. Journal of Pharmacology*, 94, 1257 (1988).
- S. A. Thompson, P. J. Whiting and K. A. Wafford, *British Journal of Pharmacology*, **117**, 521 (1996).
- 19.R. L. Macdonald and M. J. McLean, *Epilepsia*, 23, 7 (1982).
- 20. M. B. Waller and J. A. Richter, *Biochemical Pharmacology*, **29**, 2189 (1980).
- 21. H. Zhu, J. E. Cottrell and I. S. Kass, Anesthesiology, 87, 944 (1997).
- 22. M. P. Blaustein, A. C. Ector, *Molecular Pharmacology*, **11**, 369 (1975).
- S. Shibuta, J. Kosaka, T. Mashimo, Y. Fukuda and I. Yoshiya, *British Journal of Pharmacology*, 124, 804 (1998).
- 24. K. M. Khan, M. Khan, M. Ali, M. Taha, A. Hameed, S. Ali, S. Perveen and M. I. Choudhary, *Medicinal. Chemistry*, 7, 231 (2011).
- 25. M. A. Whidden, J. M. McClung, D. J. Falk, M. B. Hudson, A. J. Smuder, W. B. Nelson and S. K. Powers, *Journal of Applied Physiology*, **106**, 385 (2009).
- L.D. Kong, Y. Cai, W. W. Huang, C. H. Cheng and R. X. Tan, *Journal of Ethnopharmacology*, 73, 199 (2000).
- 27. S. K. Lee, Z. H. Mbwambo, H. Chung, L. Luyengi, E. J. Gamez and R. G. Mehata, *Combinatorial Chemistry and High Throughput Screening*, **1**, 35 (1998).