Spectroscopic Determination of Zinc with Dithizone in Anionic Micellar Media of Dodecyl Sulphate Salt

G. A. SHAR AND M. I. BHANGER
Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan

(Received 20th January, 2001)

Summary: A spectrophotometric study of zinc-dithizionate complex in aqueous phase in the presence of sodium dodecyl sulphate (SDS) anionic surfactant is reported here. The presence of micellar system avoids the previous steps of solvent extraction and reduces the cost, toxicity and enhances the molar absorptivity. The method obeys Beer's law in the concentration range of $1.5 \times 10^{-2} - 1.5 \times 10^{-4}$ M. The detection limit of Zn(II) is 3×10^{-5} M. The molar absorptivity, sensitivity, critical micelle concentration, dithizone and metal ion concentration are studied and discussed. The method has been applied to the determination of Zn(II) in pharmaceutical preparations and vegetables. The present method was also compared with FAAS method and the results are comparable. There is no significant difference between the two methods at 95% confidence interval.

Introduction

Dithizone (diphenyl thiocarbazole, H_2D_2) is one of the most widely used photometric reagent and forms coloured water-insoluble complexes with a large number of metal ions [1-4]. Metal-dithizone complexes are water insoluble and thus the determination requires a prior solvent extraction step into chloroform or carbon tetrachloride [5-7] followed by spectrophotometric measurements. This problem has been overcome in recent years by introducing a hydrophobic micellar system generated by a surfactant similar to the one employed in phase-transfer reactions [8-14]. Nevertheless, the addition of surfactants in concentrations above the CMC to the aqueous medium to form a micelle solution is the most commonly preferred procedure nowadays. Non-ionic surfactant like Triton X-100, have been used for the spectrophotometric determination of several metal ions e.g. Cu(II), Hg(II) and Ag(I) [15].

The present work describes a procedure to determine Zn(II) in the presence of an inexpensive anionic micelles the sodium dodecyl sulphate. This method does not require a solvent extraction step, hence the use of carbon tetrachloride or chloroform is avoided. In place of the organic solvents a less toxic agent [16] in the form of dodecyl sulphate salt is used.

Results and Discussion

Complexation of dithizone, diphenyl thiocarbazole with several metal ions is well established. Fig. (1) shows a reaction of zinc with dithizone to produce zinc-dithizone complex.

![Fig. 1 Reaction of zinc with dithizone to form zinc-dithizone complex](image)

Spectrophotometric properties of zinc(II) dithizone complexes

In order to establish the experimental conditions for the spectrophotometric determination of zinc(II) dithizone was carried out. Fig. (2) is the spectra for a dithizone solution 3.9×10^{-5} M and shows absorbance maxima at 430 nm and 590 nm. The longer wavelength maximum corresponding to the thione form and the shorter to the thiol form [19]. Fig. (3) shows a spectra for a dithizone-zinc (II) complex with an absorbance maxima at 540 nm. Comparison of the analytical wavelengths with the
Fig. 2 Absorption spectra of dithizone at (λ_{max} 590 nm) in SDS at pH 5 (a) Dithizone 3.9 x 10^{-3} M (b) SDS 1.8 x 10^{-1} M

Fig. 3 Absorption spectra of zinc (II) dithizone complex at (λ_{max} 540 nm) in SDS at pH 5 (a) Zn 3.5 x 10^{-3} M (b) Dithizone 3.9 x 10^{-3} M (c) SDS 1.8 x 10^{-1} M

Fig. 4 Absorption spectra of zinc (II) dithizone complex at (λ_{max} 535 nm) in CCl_{4} at pH 5. (a) Zn (II) 6 x 10^{-5} M (b) Dithizone 3.9 x 10^{-3} M.

Fig. 5 Effect of pH on the absorbance of zinc(II) dithizone complex at (λ_{max} 540 nm). (a) dithizone 3.9 x 10^{-5} M (b) SDS 1.8 x 10^{-1} M (c) Zn 4.5 x 10^{-5} M.

wavelength after solvent extraction see Table-1 reveals that the presence of sodium dodecyl sulphate (anionic micelle) causes a displacement of the maximum wavelength (λ_{max}) for the zinc(II)-dithizone in 1.8 x 10^{-1} M SDS. This behaviour is in accordance with that observed for DJTC metal complexes in similar media [20] as shown in Fig. (4). The pH of the solution also had a marked effect on the absorbance of the zinc(II) dithizone. On increasing pH to 6.5, the peak at 540 nm shifts hyperchromically and bathochromically to 560 nm. As the ligand absorbs significantly at the absorption maxima of the complex relative increase in absorbance of the complex was calculated and plotted against pH as shown in Fig. (5). This plot shows a maximum at pH 5, which has been taken as the pH of maximum complex formation throughout this work.

Table-1 Experimental conditions for zinc metal ion determination by complexation with dithizone in (a) aqueous anionic micellar medium and (b) by solvent extraction in CCl_{4}

<table>
<thead>
<tr>
<th>Solvent Method</th>
<th>pH</th>
<th>λ_{max} (nm)</th>
<th>Conc. of SDS (M)</th>
<th>Conc. of H_{2}D_{2}O (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous Micellar</td>
<td>5</td>
<td>540</td>
<td>1.8 x 10^{-4}</td>
<td>3.9 x 10^{-2}</td>
</tr>
<tr>
<td>CCl_{4} Solvent Extraction</td>
<td>5-5.5</td>
<td>535</td>
<td>————</td>
<td>0.001 %</td>
</tr>
</tbody>
</table>

The absorbance spectra of the solutions containing increasing amounts of sodium...
Fig. 6 Effect of SDS conc. on the absorbance of zinc-dithizone complex at (λ_{max} 540 nm). (a) dithizone 3.9×10^{-5} M (b) SDS 1.8×10^{-1} M (c) Zn 3.5×10^{-5} M.

Fig. 7 Variation of critical micelle concentration (CMC) of dodecyl sulphate salt (SDS) with dithizone concentration.

Fig. 8 Effect of dithizone conc. on the absorbance of zinc-dithizone complex at (λ_{max} 540). (a) dithizone 3.9×10^{-5} M (b) SDS 1.8×10^{-1} M (c) Zn 4.5×10^{-5} M.

dodecylsulphate showed an increase in optical density with an increase in SDS concentration up to 1.8×10^{-1} M of the complex and the ligand as shown in Fig.(6). A slight decrease, however, was observed above this concentration. The surfactant concentration was maintained at 1.8×10^{-1} M during subsequent studies. The critical micellar
concentration was determined from conductivity measurements. A CMC of 8.5 x 10^{-3} M was obtained in pure aqueous solution. This value is in agreement with the literature value [21] Fig. (7) shows variation in CMC with the addition of dithizone concentration. The absorption maximum at (\(\lambda_{\text{max}}\) 540 nm) of the solution containing varying amounts of dithizone in presence of constant zinc(II) concentration (6 x 10^{-3} M) increased with increase in dithizone concentration. Fig. (8) shows an increase up to 3.9 x 10^{-3} M.

Higher ligand concentration posed dissolusion problem besides introducing error in the absorbance correction due to higher ratio of ligand to complex absorptivity. Metal to ligand ratio in the complex is 1 : 2 (M : L), and the complex remained constant for at least 2h. Absorption spectra of solution containing increasing amounts of zinc(II) from 1.5 x 10^{-3} - 1.5 x 10^{-4} M and fixed amount of dithizone was found to show a linear increase in absorbance at 540 nm as shown in Fig. (9). Fig. (10) shows a calibration graph of zinc concentration against the absorbance at 540 nm. Linear regression was carried out from which the regression coefficient was calculated as 0.999. The relative standard deviation for a 1.5 x 10^{-4} M standard (n=8) was 1.2%. In the present study the effect of the presence of foreign ions, on the determination of micro quantities of zinc by this method has been investigated by studying the absorption spectra. Sodium thioumithate (0.04 M) was added to mask interference from cobalt, nickel, mercury, bismuth, lead and cadmium.

Application

The proposed spectroscopic method was applied to the determination of Zn(II) in industrial waste-water, vegetable and pharmaceutical samples. The lowest detection limit for this metal was found to be 3 x 10^{-6} M. Table-2 shows the results obtained with the above samples. These results correlate well with those obtained by atomic absorption spectrophotometry at 95% confidence level.

Experimental

All chemicals used were analytical grade reagents (Merck and Fluka) unless otherwise stated. Stock solution of Zn (1g L^{-1}) in 0.085 M hydrochloric acid. As dithizone (diphenyl thiocarbazone) 500 mg L^{-1} is sparingly soluble in SDS, it was dissolved in the minimum volume of 1 M NaOH solution followed by 4 percent SDS. Finally the solution was acidified with dilute H_{2}SO_{4}. In order to prevent the dithizone from oxidation 0.5ml of 0.72 molar hydroxylamine hydrochloride was added and solution kept at 10^\circ C. Fresh solution was prepared daily [17]. Sodium dodecyl sulphate (SDS) 0.6 M was prepared in hot water (below 20^\circ C) the solution was hazy. sodium acetate (0.2 M) buffer solution adjusted to pH 5 with acetic acid (0.2 M). Sodium thiosulphate (0.04 M) was added to mask interference. A UV / VIS Spectrometer Perkin Elmer model Lambda 2 was used throughout this study. Atomic absorption spectrometer, model Spectra AA. 20 Varian was used for comparative metal ion study. The following analytical parameters were used: photomultiplier voltage 349.9, wavelength 213.9 (nm), slit width 1.0 nm, flame air -acetylene, acetylene flow rate 1.5 L/min. Conductivity meter (WTW), LF 330 model was used for determining CMC of the solution.

Determination of surfactant CMC

The CMC value of SDS was determined using a conductivity measurements. The surfactant

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Sample</th>
<th>Amount of Zn(II) determined (mg)</th>
<th>Present method</th>
<th>FAAS</th>
<th>C. V %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Industrial waste (mg/L)^*</td>
<td>32.10</td>
<td>32.50</td>
<td>± 0.36</td>
<td>1.12</td>
</tr>
<tr>
<td>2.</td>
<td>Vegetable sample (mg/kg) (field vetch) Agrostis pallescens</td>
<td>15.50</td>
<td>15.71</td>
<td>± 0.40</td>
<td>2.58</td>
</tr>
<tr>
<td>3.</td>
<td>Pharmaceutical sample Sulfin (ug/tablet) Abbott lab. Karachi Pakistan</td>
<td>21.70</td>
<td>22.1</td>
<td>± 0.63</td>
<td>2.81</td>
</tr>
</tbody>
</table>

*At 95% t-test, n=6
Kotri Site Area, "per tablet
concentration ranged from $1 \times 10^{-3} - 2.8 \times 10^{-1}$ M. The occurrence of a sharp inflection point in the plots of specific conductivity versus surfactant concentration indicated the CMC.

Determination of surfactant CMC, in the presence of dithizone

The CMC values in the presence of different concentrations ($1.95 \times 10^{-5} - 3.9 \times 10^{-5}$ M) of dithizone was obtained from conductivity measurements. The surfactant concentration was determined over the same concentration range as in the absence of dithizone and the CMC was obtained from the sharp inflection point occurring in the plots of specific conductivity versus surfactant concentration.

Spectrophotometric metal ion determination in micellar solution.

Appropriate volumes of stock solutions of Zn(II) ion, dithizone and SDS were added to a series of 25 ml calibrated flasks and made up to volume with distilled water. The following concentrations was used: Zn(II) $3 \times 10^{-4} - 1.5 \times 10^{-4}$ M, dithizone 3.9×10^{-3} M and SDS 1.8×10^{-3} M. The surfactant concentration, pH values and analytical wavelength used are listed in Table 1.

To study the effect of varying dithizone concentration, solutions with increasing ligand concentrations were prepared under the conditions of maximum complex formation keeping all other variables constant.

Spectrophotometric metal ion determination after extraction with CCl₄.

Appropriate volumes of stock metal and dithizone aqueous solutions were placed into a separating funnel and 10 ml of CCl₄ were added. The organic layer was transferred to a 25 ml volumetric flask. In order to obtain complete extraction, the process was repeated twice, the first time with 10 ml and the second time with 5 ml of CCl₄. For the 25 ml total volume of the organic layer, absorbance was measured at the appropriate wavelength for metal ion [18].

Sensitivity and detection limit

The sensitivity of the spectrophotometric method was determined from the slope of the analytical calibration curve and expressed as the molar absorptivity. The detection limit was defined as the sample solution concentration giving a signal equal to the blank signal plus three times the standard deviation of the blank. A least-square method was used to calculate the linear relationship between the analytical signal (absorbance) and the concentration. The regression curve thus calculated was used to estimate sensitivity and the detection limit.

Determination of Zn(II) in real samples

a. **Industrial waste water**

Industrial waste water sample, 1L obtained from an industrial effluent collected from Kotri site area was filtered using Whatman filter paper. Concentrated nitric acid 4 ml and 30% hydrogen peroxide 2 ml were added to the filtrate. The resulting solution was preconcentrated in an oven at 110 °C to a final volume of 25 ml. Appropriate amounts of SDS and dithizone was added to a 25 ml calibrated flask to obtain final concentration of 1.8×10^{-3} M in SDS and 3.9×10^{-3} M in dithizone. Then 5 ml of the sample was added and the absorbance was measured against water. The same sample, 5 ml was diluted to 25 ml with double distilled water for FAAS analysis.

b. **Vegetable sample**

Vegetable sample, fruit lomentum of *caymopsis psoralides*, (field vetch), locally called (guwar), was collected from Jamshoro locality, washed with triple distilled water and dried in an oven at 110°C. The sample was ground in a mortar from which 5 g was digested in 10 ml concentrated nitric acid, 2 ml 30% hydrogen peroxide, by heating on a hot plate continued for two hours until the volume was reduced to 2-3 ml, then it was filtered. The volume was then made up to 25 ml with deionized water and the pH was adjusted as required. Appropriate amounts of SDS and dithizone was added to a 25 ml calibrated flask to obtain final concentration of 1.8×10^{-3} M in SDS and 3.9×10^{-3} M in dithizone. Then 5 ml of the sample was added and the absorbance was measured against water. The same sample, 25 ml was then analyzed for FAAS analysis.

a. **Pharmaceutical sample**

Tablet Surbex-z (Abbott Ltd. Pakistan), 1g was dissolved in 10 ml concentrated nitric acid and 2 ml
30% H$_2$O$_2$; then solution was evaporated for 2 hours until volume was reduced to 2-3 ml. The solution was filtered and made up the final volume of 100 ml. The pH was adjusted to 5. Appropriate amounts of SDS and dithizone was added to a 25 ml calibrated flask to obtain final concentration of 1.8 x 10$^{-5}$ M in SDS and 3.9 x 10$^{-5}$ M in dithizone. Then appropriate volume of sample (0.2 - 1.1 ml) was added and the absorbance was measured against water. Same sample, 1 ml diluted to 25 ml with double distilled water for FAAS analysis.

Conclusion

Determination of trace amount of Zn(II) is carried out directly using dithizone in anionic micellar media of sodium dodecyl sulphate in aqueous solutions. The method is simple and rapid with greater sensitivity, better selectivity, improved precision and replaces difficult step of extraction with toxic organic solvents. Zn(II) content in various matrices can be determined by the present method.

References