Some Reactions of 6-Chloro-2-Methyl 4H-1-Benzopyran-4-one (Part I)

MOUNIR A.I. SALEM, A.A. HAMED, A. G. *EL-SHEKEIL, A.S. *BABAQUI AND HASSAN M.F. MADKOUR

Chemistry Department, Faculty of Science, Ain Shams University, Cairo, A.R.E.

*Chemistry Department, Faculty of Science, Sana's University, Y.A.R.

(Received 23rd August, 1988, revised 28th September, 1989)

Summary:4H-1-Benzopyran-4-ones (Chromones are proved to be of special importance in medicine as stimulants of the central nervous system, spasmolytics, coronary dilators, inhibitors for the growth of human cancer cells, reductants for blood pressure, diuretics, antialiergic, antibiotics and cardiovascular agents. In the course of the present work several new derivatives containing the chromone moiety were prepared. Some of their reactions were investigated in the hope of obtaining new compounds having biological activities. The reactivities of chromone nucleus towards cycloaddition reactions under Diels- Alder conditions, nucleophilic and electrophilic reagents, photocyclodehydrogenation and thiation have been investigated.

Introduction

6-Chloro-2-methy-l4H-1-benzopyran-4-one (II) was prepared via acid-catalyzed cyclodehydration of the β -diketone [1,2], 2-aceto-acetyl-4-chlorophenol (I).

The 2-styryl derivatives IIIa-f were synthesised by the treatment of II with aromatic aldehydes namely, benzaldehyde, anisaldehyde, p-chlorobenzaldehyde, p-nitrobenzaldehyde, piperonal and furan-2- aldehyde in the presence of sodium ethoxide in asbolute ethanol at room temperature [3].

IIIa-f as dienes undergo Diels-Alder reaction with maleic anhydride and N-aryl maleimides to

give the xanthone derivatives IVa-d and Va-t respectively.

Hydrolysis of IVa and Va with ethanolic potassium hydroxide gave the same dicarboxylic acid VI. Treatment of VI with absolute ethanol in presence of hydrogen chloride gas gave the corresponding ester VII, which was also obtained from the ethanolysis of both IVa and Va respectively. Aromatisation of the xanthone derivative IVa to VIII was readily accomplished by bromination and dehydrobromination without isolation of the brominated intermediate [4].

It was previously reported that phthalazinones which are useful [5] were synthesised via treatment of o-aroylbenzoic acid with hydrazine hydrate. This prompted us to investigate the action of hydrazine hydrate on the xanthone derivative IVa in acetic acid aiming to yield the desired 1,4phthalazindione derivative IX which really exists in the lactam-lactim dynamic equilibrium.

On the other hand, when IVa,b were allowed to react with primary aromatic amines namely; ptoluidine, p-anisidine and p-chloroaniline, the products obtained were found to be identical with the Diels-Alder adducts Vb-d,g-i by means of m.p., mixed m.p. determination and IR spectra comparison.

 $\mathbf{I}\mathbf{X}$

Results and Discussion

Photocyclodehydrogenation of stilbenes and their analogues is a potential synthetic method for polycyclic aromatic compounds, and has been studied extensively [6]. As part of our work we studied the photocyclization of 6-chloro-2-styryl-4H-chromen-4- ones (IIIa-d) in order to obtain 12-H-benzo [a] xanthen-12-ones (Xa,b). We have found that photocyclization occurred when the 4-position of the styryl ring was occupied by an electron donating group whereas the process did not succeed absolutely in case of an electron withdrawing group set in para position. Thus we concluded that the polar effect of substituents in the styryl moiety plays a significant role in the process.

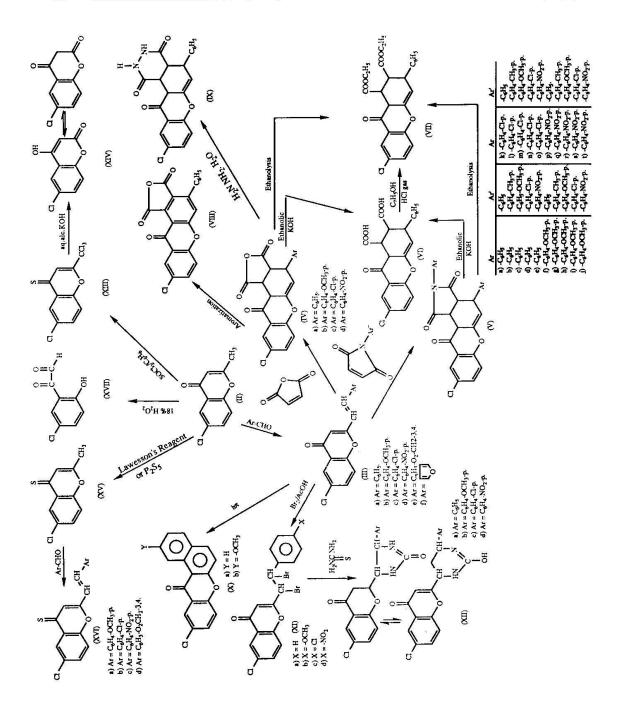
Bromination of 2-styryl chromones IIIa-d in glacial acetic acid gave the corresponding vicinal dibromides XIa-d. XIa-d reacted with thiourea yielding thioimidazolone derivatives as intermediates which were directly hydrolysed with aqueous alcoholic KOH and gave the corresponding imidazolone derivative XIIa-d which can exist in keto-enol dynamic equilibrium. Also, treatment of the vicinal dibromides XIa,b with urea in boiling ethanol in the presence of aq.alc. KOH gave products which were found to be identical with XIIa,b respectively by means of m.p., mixed m.p. determination and IR spectra comparison.

Chlorination of chromone II was achieved by thionyl chloride in boiling benzene to give XIII which was hydrolysed with alcoholic alkali to yield the desired 6-chloro-chroman-2,4-dione (XIV) in poor yield [8]. On the basis of the IR spectra of XIII and XIV, the hydrolysis product has the proposed structure XIV.

Compound XIV is soluble in sodium bicarbonate solution and gives a brown colouration with neutral FeCl₃, which disappeared quickly.

Thiation of the chromone II was carried out by the use of either 2,4-bis-(4-methoxyphenyl)-1,2,3, 4-dithiadiphosphetane-2,4-disulphide (Lawesson's reagent) [9] or phosphorous pentasulphide to give 6-chloro-2-methylchromen-4-thione (XV). The former reagent has the advantage of high yield of the product and time-saving.

6-Chloro-2-methyl-4-thiochromone (XV) condensed with aromatic aldehydes namely, anisaldehyde, p-chlorobenzaldehyde, p-nitrobenzaldehyde and piperonal in presence of piperidine to yield the desired 2-styryl derivatives XVIa-d respectively.


Aiming to synthesise the epoxide of the chromone II, we have found that epoxidation of the double bond at C₂-C₃ position in the γ -pyrone ring is highly difficult probably due to the presence of C=O group at $\alpha\beta$ -position with respect to the double bond and the chlorine atom at the aryl ring. We could isolate only 5-chloro-2-hydroxyphenylglyoxal (XVII) and 5- chlorosalicylic acid in case of using alkaline hydrogen peroxide. The substrate chromone II was always separated whatever the reaction conditions. The product XVII gave positive Fehling's solution test, it reduced ammonical silver nitrate and restored the color of Schiff's reagent.

The structures of the products obtained were confirmed by elemental analysis, infrared spectra and ¹H and ¹³C-nuclear magnetic resonance spectral data (c.f. Tables 1-8).

Experimental

Melting points reported are uncorrected. IR spectra in KBr were recorded on a Beckmann IR-20 spectrophotometer and Pye Unicam SP 3300 spectrophotometer. The ¹H-NMR spectra were determined on a Varian T-60 or Jeol FX 90 spectrometer. In all NMR experiments the internal standard was TMS and the solvent was CDCl3. All chemical shifts are in ppm downfield from TMS. The ¹³C-NMR spectra were determined on Jeol FX 90 Q Fourier Transform instrument operating at 22.50 MHz, 8192 data points were collected and a sweep width of 5000 Hz, i.e., digital resolution of 0.6 Hz (0.03 ppm). Pulse intervals of 5 seconds or more were used to achieve resonable signal-tonoise ratios especially for the singals of carbons of long relaxation times, e.g., C = O and C = N.

5-Chloro-2-hydroxyacetophenone was prepared from p-chlorophenylacetate ester via Fries rearrangement by the method of Auwers and Wittig.

No	M.P.°C	Solvent of	817 S874s	Analys		2		
	(colour)	crystal- lisation/ (yield %)	M.F./(M.W)	Calcd., C%	/Found H%	IR spectra (KBr) ν (cm ⁻¹)		
ī	113-114	Light pertrol	C10H9ClO3	56.46	4.23	1700 and 1630		
	(yellow)	(60-80°C) (82)	(212.5)	56.62	4.20	(keto & enoi forms of β -diketo system) 3420 intensive (intensive hardest OH)		
II	119-120	Light petrol	C10H7ClO2	61.69	3.59	hydrogen bonded -OH) 1680 (-CO-pyrone		
	(yellow)	(80-100°C)	(194.5)	61.24	3.55	1610 (C=C)		
	()01.01.)	(94)	(17-15)	01.21	3.55	1150 (-O-)		
		(**)				2870 (-CH ₃) no 1/ -OH		
IIIa	159-160	Benzene	C17H11ClO2	72.21	3.89			
	(yellow)	(82)	(282.5)	71.89	3.87	1645-1630 (-CO-pyrone)		
IIIb	186-187	Benzene	C18H13ClO3	69.12	4.16	1610-1600 (C = C)		
	(yellow)	(78)	(312.5)	69.42	4.12	1130-1090 (-O-) 3090-3060 (-CH trans).		
III_c	244-245	Benzene	C17H10Cl2O2	64.35	3.15	An installed a second		
	(pale yello	w) (91)	(317)	64.51	3.12			
IIId	315-316	Anisole	C ₁₇ H ₁₀ CINO ₄	62.29	3.05			
	(bright yel	low) (94)	(327.5)	61.97	2.92	20		
IIIe	240-241	Toluene	C18H11ClO4	66.16	3.37			
	(yellow)	(74)	(326.5)	66.30	3.24			
$\mathbf{III_f}$	213-214	Toluene	C ₁₅ H ₉ ClO ₃	66.06	3.30			
	(yellow)	(69)	(272.5)	66.09	3.42			

Table-1: Physical data of compounds I, II & IIIa-f

Condensation of 6-chloro-2-methyl-4H-1-ben-zopyran-4-one (II) and/or 6-chloro-2-methyl-4H-1-benzopyran-4-thione (XV) with aromatic aldehydes; Formation of 2-styryl-6-chloro-4H-1-benzopyran-4-thione (XV I_{a-d})

A solution of II and/or XV (0.01 mol., 1.9 g) in the least amount of absolute ethanol was treated at room temperature with alcoholic sodium ethoxide (0.23) g. of sodium metal in 40 ml. of absolute ethanol) or 5-7 drops of piperidine. The appropriate aldehyde was added and the reaction mixture was stirred for 2 hrs. [the mixture was refluxed for 6 hrs. in case of XV]. The product obtained after pouring into ice-water was filtered off and crystallized from suitable solvent to give the styryl derivatives III or XVI respectively (c.f. Table 1 & 7).

Diels-Alder reaction of the 2-styryl derivatives III_{a-d} with meleic anhydride and/or N-arylmaleimides; Formation of xanthone derivatives $IV_{a-d} \& V_{a-t}$

0.004 mole of the 2-styryl derivative III_{a-d} was mixed with meleic anhydride (0.04 mol, 4 g.) or the

appropriate N- arylmaleimide (0.008 mol) in molar ratio 1:10 (while the molar ratio was 1:2 in case of N-arylmaleimides), in 30 ml. of dry phenetole. The reaction mixture was heated under reflux for 48 hrs. (15 hrs. in case of N-arylmaleimide) left to cool and the product was filtered off and recrystallized from the proper solvent to give xanthone IV_{a-d} or V_{a-t} respectively (c.f. Tables 2 & 3).

Hydrolysis of IVa and/or Va: Formation of VI

The Diels-Alder adduct IV_a and/or V_a (0.5 g) was refulxed with 10% aqueous alcoholic potassium hydroxide (10-20 ml.) for 1-4 hrs. respectively.

The product that separated out after cooling was acidified with diluted hydrochloric acid, washed with water several times, dried and then crystallized from the suitable solvent to give the same dicarboxylic acid VI (c.f. Table 4).

Ethanolysis of xanthone derivative (IV_a); Formation of VII

Xanthone derivative (IV_a) (0.003 mol; 1.1 g.) was suspended in 30 ml. of absolute ethanol and

Table-2: Physical data of adducts IVa-d

No.	M.P.°C (Colour)	Solvent of crystal-	M.F./(W.M)	Analys Calcd.,	is /Found		IR spectra (KBr) V(cm ⁻¹)
	. ,	lisation/ (yield %)		C%	Н%	N%	
IV.	258-260	Anisole	C21H13ClO5	66.22	3.41		
	(colourless)	(46)	(380.5)	66.15	3.38		1860-1820 doublet 1790-1770
IV_b	243-244	Toluene	C22H15ClO6	64.31	3.65		(-CO-anhydride)
	(colourless)	(62)	(410.5)	64.55	3.69		
IV_c	289290	Anisole	C21H12Cl2O5	60.72	2.89		1650-1640 (-CO-pyrone)
	(colourless)	(43)	(415)	61.02	2.93		1610-1600 (C = C)
IV_d	274-276	Xylene	C21H12ClNO7	59.22	2.82	3.29	
	(colourless)	(38)	(425.5)	59.56	3.00	3.18	

hydrogen chloride gas was passed into the suspension for 1 hr. Most of the solvent was removed and then the cold yellow solution was diluted with water. The solid that precipitated was filtered off, washed with water, dried and then crystallized from the proper solvent yielding the desired diester (VII) (cf. Table 4).

Esterification of the dicarboxylic acid (VI); Formation of VII

A mixture of the dicarboxylic acid (VI) (2g.; 0.005 mol), absolute ethanol (1 ml., 0.017 mol), 10 ml. of sodium - dried benzene and few drops of concentrated sulphuric acid was refluxed for 8 hrs. The reaction mixture was poured into excess of water. The benzene layer and the aqueous layer was extracted with ether. The combined extracts were washed with saturated sodium hydrogen carbonate solution until effervescence ceased, then with water, and dried with anhydrous sodium sulphate. The solvent was removed and the product that separated out was collected and crystallized from aqueous ethanol to give VII.

Aromatization of the xanthone derivative (IV_a); Formation of VIII

To a suspension of 1 g. xanthone derivative (IV_a) in 10 ml. of chloroform was added 10 ml. of 1 M solution of bromine in chloroform (1.6 g of bromine in 10 ml. of chloroform) dropwise and

during the addition the reaction mixture was chilled in an ice - bath and stirred for 3 hrs. After the bromine solution had been added, the reaction mixture was warmed on a steam bath until the evolution of hydrogen bromide had ceased and the volume was reduced to 50%. Then absolute ethanol was added and the solution was chilled in ice. The solid that precipitated was collected, washed with water, dried and crystallized from the suitable solvent to give the aromatized adduct (VIII) (cf. Table 4).

Action of hydrazine hydrate on the xanthone (IV_a); Formation of 1,4-phthalazindione (IX)

A mixture of IV_a (0.003 mol, 1.1 g) and hydrazine hydrate (0.006 mol 0.4 ml; assay 99-100%) was heated under reflux in glacial acetic acid (20 ml) for 6 hrs. After cooling, the reaction mixture was diluted with water and the solid that separated out was filtered off and crystallized from the suitable solvent to give IX (cf. Table 4).

Reaction of primary aromatic amines with the xanthone ($IV_{a,b}$); Formation of V_{a-d} & g-i

To IV_a and/or IV_b (0.003 mol) was added the appropriate primary aromatic amine namely ptoluidine, p-anisidine and p-chloroaniline (0.004 mol) in glacial acetic acid (30 ml.). The reaction mixture was refluxed for 6 hrs. The reaction mixture

6-CHLORO-2-METHYL-4H-1-BENZOPYRAN-4-ONE

Table-3: Physical data of adducts IVa-t

No.	M.P.°C (Colour)	Solvent of crystal-	M.F./(W.M)	Analysis Calcd./Found			IR spectra (KBr) ν (cm ⁻¹)
		lisation/ (yield %)		C%	Н%	N%	
Va	321-322	Anisole	C27H18CINO4	71.12	3.95	3.07	
	(colourless)	(72)	(455.5)	71.12	3.92	2.98	1720-1710 -CO-imide 1680-1650
V_b	317-318	Xylene	C28H20CINO4	71.56	4.25	2.98	1660-1630 (-СО- рутопс
	(colourless)	(68)	(469.5)	71.82	4.19	3.00	
V_c	302-303	Xylene	C28H20CINO5	69.20	4.11	2.88	1620-1610 (C = C)
	(colourless)	(66)	(485.5)	68.92	4.18	2.74	
V_d	331-332	Xylene	C27H17Cl2NO4		3.46	2.85	
	(colourless)	(71)	(490)	66.43	3.29	2.77	
Ve	> 340	Anisole	C27H17CIN2O6		3.39	5.59	
	(pale buff)	(72)	(500.5)	64.68	3.44	5.80	
$V_{\rm f}$	235-236	Toluene	C28H20ClNO5	69.20	4.11	2.88	
1202	(pale yellow)	(63)	(485.5)	68.97	4.15	2.72	
V_g	262-263	Toluene	C29H22CINO5	69.66	4.40	2.80	
	(pale yellow)	(68)	(499.5)	69.32	4.29	2.54	1720-1710 -CO-imide 1680-1650
V_{h}	241-242	Toluene	C29H22CINO6	67.50	4.26	2.71	
	(pale yellow)	(72)	(515.5)	67.29	4.16	2.63	1660-1630 (-CO-pyrone)
\mathbf{V}_{i}	294-295	Anisole	C28H19Cl2NO5	64.61	3.65	2.64	1620-1610 (C = C)
	(pale yellow)	(63)	(520)	64.44	3.75	2.67	
$\mathbf{V}_{\mathbf{j}}$	279.280	Anisole	C28H19CIN2O7	63.33	3.58	5.27	
	(pale yellow)	(68)	(530.5)	63.60	3.47	5.40	
Vk	176.178	Toluene	C27H17Cl2NO4	66.12	3.46	2.85	
	(decomp.) (pale yellow)	(70)	(490)	65.48	3.32	2.79	
V_1	263-265	Benzene	C28H19Cl2NO4	66.66	3.76	2.77	
	(decomp.) (pale yellow)	(65)	(504)	66.50	3.82	2.70	
V_{m}	188-189	Anisole	C28H19Cl2NO5	64.61	3.65	2.69	
	(decomp.)	(66)	(520)	64.92	3.47	2.50	
	(colourless)						
V_n	305-307	Anisole	C27H16Cl3NO4	61.77	3.05	2.66	
	(colourless)	(72)	(524.5)	62.11	3.22	2.62	1720-1710 -CO-imide
V_o	303-304	Anisole	C27H16Cl2N2O6		2.99	5.23	
	(decomp.)	(58)	(535)	60.82	3.05	5.18	1660-1630 (-CO-pyrone)
V_p	250-252	Xylene	C27H17ClN2O6	64.73	3.39	5.59	1620-1610 (C = C)
	(pale yellow	(55)	(500.5)	64.64	3.18	5.48	
V_q	271-273	Xylene	C28H19ClN2O6	65.30	3.69	5.44	
	(pale orange)	(68)	(514.5)	65.24	3.74	5.28	
V_r	255-256	Anisole	C28H19CIN2O7	63.33	3.58	5.27	
	(pale buff)	(72)	(530.5)	63.20	3.64	5.19	
V_s	280-285	Xylene	C27H16Cl2N2O6	60.56	2.99	5.23	
	(Shr.)	(62)	(535)	60.32	2.83	5.40	
	(pale orange)	100 E	and the			18	
	$\ddot{\mathbf{v}}_{\iota}$	289-290	Anisole	C27H16	CIN ₃ O ₈	59.39	2.92 7.69
	(pale buff)		(55)	(545 E)	59.64	3.00	7.53

Table-4: Phyical data of compounds VI, VII, VIII & IX..

No.	M.P.°C (Colour)	Solvent of crystal-	M.F./(W.M)	Analys Calcd.	is /Found		IR spectra (KBr) v(cm ⁻¹)
<u> </u>		lisation/ (yield %)		C%	C% H%		
VI	139-140	Benzene	C21H15ClO6	63.23	3.76		to the second se
	(decomp.)	(62)	(398.5)	63.48	3.62		1690 (-CO-acid)
	(colourless)	- 1500 - 1500	ST TS				1650 (-CO pyrone)
							1610 (C=C)
							3460 (-OH acid)
VII	218-219	Aqueous	C25H23ClO6	66.00	5.06		1730-1700 (-CO-ester)
	(colourless)	Ethanol	(454.5)	65.97	4.88		9950 509
		(1:2)					1640 (-CO-pyrone)
		(67)					1610 (C=C)
							1280 (-O-)
VIII	232-233	Benzene	C21H8ClO5	67.11	2.11		1830
	(decomp.)	(84)	(375.5)	67.00	2.20		1750 -CO-anhydride
	(yellow)	200 20	18401 S				1645 (-CO-pyrone)
							1610 (C=C)
IX	246-247	Benzene	C21H15ClN2O4	64.00	3.80	7.10	1690
	(pale yellow) (63)	(394.5)	63.92	3.93	7.05	1645 (CO-1,4-
							phthalazindione, -CO-pyrone)
	×						1620 (C=N)
							1605 (C=N)
							3240
							3320 (NH)
							3430 (-OH)

Table-5: Physical data of compounds Xa,b & XIa-d

No.	M.P.°C (Colour)	Solvent of crystal-	M.F./(W.M)	Analysis Calcd./Found			IR spectra (KBr) ν (cm ⁻¹)	
		lisation/ (yield %)		C%	Н%	N%		
X _a	148-149	Benzene +	C17H9ClO2	72.72	3.20		я	
	(pale orange) (17)	L.P (80-100°C)	(280.5)	72.53	3.42		1640-1635 (-CO- chromone) 1610 (C=C)	
Хь	173-174 (pale orange)	Light petrol (100-120°C) (22)	C ₁₈ H ₁₁ ClO ₃ (310.5)	69.56 69.37	3.54 3.66		1140 (-O-)	
XIa	175-178 (decomp.) (colourless)	Benzene (72)	C ₁₇ H ₁₁ Br ₂ ClO ₂ (442.5)	46.10 46.46	2.49 2.33		1660-1640 (-CO- chromone)	
ХIь	179-181 (decomp.) (pale yellow	Toluene (68)	C ₁₈ H ₁₃ Br ₂ ClO ₃ (472.5)	45.71 45.83	2.75 2.80		1615-1600 (C=C) 1170-1130 (-O-) 585-550 (C-Br)	
ΧΙc	187-188	Toluene (71)	C ₁₇ H ₁₀ Br ₂ Cl ₂ O ₂ (477.0)	42.76 43.00	2.09 2.10		1370 for XI _d only (-NO ₂)	
ΧId	247-248 (pale yellow)	Xylene	C ₁₇ H ₁₀ Br ₂ CINO (487.5)	4 41.84 42.10	2.05 2.13	2.87 2.94		

6-CHLORO-2-METHYL-4H-1-BENZOPYRAN-4-ONE

Table-6: Physical data of compounds XIIa-d

No.	M.P.°C (Colour)	Solvent of crystal-	M.F./(W.M)	Analysis Calcd./Found			IR spectra (KBr) $\nu(\text{cm}^{-1})$
		lisation/ (yield %)	2.	C%	Н%	N%	
XII.	146-147	LP (100-120°C)	C18H13ClN2O3	63.44	3.82	8.22	300 E
	(yellow)	(34)	(340.5)	63.65	3.76	8.17	1710-1690 (-CO- pyrazolone)
XIIb	158-159	LP (100-120°C)	C19H15ClN2O4	61.45	4.05	7.56	
	(orange)	(28)	(370.5)	61.97	3.94	7.68	1660-1640 (-CO- chromone)
XIIc	195-196	Benzene +	C18H12Cl2N2O3	57.60	3.20	7.47	1620 (C = N)
	(intense yellow)	L.P. (80-100°C) (31)	(375.0)	57.74	3.29	7.60	1610-1600 (C = C) 3230-3190 (NH) 3450 (-OH)
XIId	> 360	Ethyl	C18H12ClN3O5	56.03	3.11	10.89	1.1485.01960.01961.114
	(deep orange)	acetate (27)	(385.5)	56.21	3.17	10.96	

Table-7: Physcal data of compounds XIII, XIV, XV, XVLa-d & XVII

No.	M.P.°C	Solvent of crystal-	M.F./(W.M)	Analys	is Found		IR spectra (KBr) ν (cm ⁻¹)
INO.	(Colour)	lisation/ (yield %)		C%	H%	N%	r(cm)
XII	338-340	Ethyi-	C10H4Cl4O2	40.30	1.30		1640 (-CO- chromone)
	(green)	acetate (38)	(298)	40.55	1.40	1	605 (C = C) 1180 (-O-)
XIV	298-299	Xylene	C9H5ClO3	54.98	2.49		3380 strong (-OH)
	(brown)	(29)	(196.5)	55.05	2.53		1720 (β -diketone)
79							1645 (-CO-chromone) 1610 (C=C)
XV	139.140	Benzene +	C10H7CIOS	57.00			1120 (-O) 3.32 1610 (C = C)
AV	(deep purple) (92)	L.P. (80-100°C)	(210.5)	56.98			3.41 1350 (C=S) 1170 (-O-)
XVI.	195-196	Benzene	C18H13ClO2S	65.75	3.95		no ν-CO-chromone
	(wine-red)	(74)	(328.5)	65.60	3.97		1360 (C=S) 1610-1600 (C=C) 1090-1140 (-O-)
XVI _a	249-250	Benzene	C17H10Cl2OS	61.26	3.00		3040-3120 (CH-
	(orange)	(78)	(333.0)	61.16	3.03		trans)
XVI _c	308-309	Anisole	C17H10CINO3S	59.38	2.91	4.07	
	(brown)	(81)	(343.5)	59.25	2.90	4.05	
XVId	235-236	Xylene	C18H11CIO3S	63.06	3.21		
	(deep purp	51 1995 19	(342.5)	63.43	3.20	22	
XVII	121-122 (colourless Benzene (38)	L.P. (80-100°C)+	C ₈ H ₅ ClO ₃ (184.5) 5	52.03 2.10	2.71 2.94		1720 (α- dicarbonyl) 1690 (C=O) 1660 (C HO) 1590 (C=C) 3450 (-OH)

Table-8: ¹H-NMR and ¹³C-NMR data of some synthesised new compounds

(splitting) (ppm) atom C		¹H-NMR		MR _	e	122 8
CO-CH ₃ OH 3.77 2H(S) C-CH ₂ probably exists about 5% in enol 124.9 C-CH ₂ probably exists about 5% in enol 124.9 C-CH ₂ probably exists about 5% in enol 124.9 C-CH ₂ probably exists about 5% in enol 124.9 C-CH ₂ probably exists about 5% in enol 124.9 C-CH ₂ probably exists apout 5% in enol 124.9 C-CH ₂ probably exists apout 5% in enol 124.9 C-CH ₂ 195.7 C-CH ₂ 195.7 C-CH ₂ 195.7 C-CH ₃ 195	Compound Structural formula	O-value		Group		
2.62 3H(S)			(splitting)		(ppm)	atom
2.62 3H(S) C-CH ₃ 16.9 C1 C-CH ₂ 123.6 C2 probably exists 127.7 C3 About 5% in enol 124.9 C4 OH	0 0				-	· · · · · · · · · · · · · · · · · · ·
2.62 3H(S) C-CH ₃ 16.9 C1 C-CH ₂ 123.6 C2 probably exists 127.7 C3 About 5% in enol 124.9 C4 OH	3 Å H	2 22		<u> </u>		<u></u>
3.77 2H(S) C-CH ₂ 123.6 C ₂ 127.7 C ₃ about 5% in enol 124.9 C ₄ 127.7 C ₅ 127.	Cl 4 2 C C C C C C C C C C C C C C C C C C	2.62	3H(S)		16.9	C_1
3.77 2H(S)	, CH ₂ , CH ₃					
oH probably exists 127.7 C3 about 5% in enol 124.9 C4 OH	5 L	3 77	2H(S)	-C-CH2	123.6	Co
about 5% in enol OH 124.9 Ca OH OH 10	OH	3.77	211(0)			
OH form -C = CH- 135.7 Cs of phenolic -OH 119.8 Cs of phenolic -OH 119.	<u>≈</u>					
6.11 1H (S) phenotic -OH 119.8 Cs 194.1 Cr 7.3-7.6 3H (m) aromatic protons 95.3 Cs 183.9 Cs 183.9 Cs 183.9 Cs 119.8 Ct 1 19.8				ОН		
6.11 1H (S) phenotic -OH 119.8 Cs 194.1 Cr 7.3-7.6 3H (m) aromatic protons 95.3 Cs 183.9 Cs 183.9 Cs 183.9 Cs 119.8 Ct 1 19.8				form -C = CH-	135.7	Cs
7.3-7.6 3H (m) aromatic protons 95.3 Cs 183.9 Cs 183.8 Cs 183.9 Cs 183.8 Cs 183.8 Cs 183.9 Cs 183.8 Cs 183.8 Cs 183.8 Cs 183.9 Cs 183.8 Cs 183.9 Cs 183.1 Cs 183.8 Cs 183.8 Cs 183.9 Cs 183.1 Cs 183.8 Cs 183.8 Cs 183.9 Cs 183.1 Cs 183.8 Cs 183.9 Cs 183.1 Cs		6.11	1H (S)			
2.38 3H(S) -CH ₃ 183.9 C ₃ 19.8 C ₁₁ O II O II 7.3-7.6 3H(m) aromatic 176.4 C ₄ 127.8 C ₅ 125.1 C ₆ 133.6 C ₇ 131.9 C ₆ 135.3 C ₉ 127.8 C ₆ 125.1 C ₆ 135.3 C ₉ 153.3 C ₉			,	And the second s		
2.38 3H(S) -CH3 19.8 C ₁₁ O II 7.3-7.6 3H(m) aromatic 17.6.4 C ₂ 134.8 C ₃ 134.8 C ₃ 127.8 C ₅ 125.1 C ₆ 133.6 C ₇ 119.7 C ₈ 153.0 C ₉ 153.0 C ₉ 153.4 C ₁₀ 153.0 C ₉ 153.0 C ₉ 153.4 C ₁₀ 153.0 C ₉ 153.0 C ₉ 153.1 C ₁₀ 153.2 C ₉ 153.2 C ₉ 153.2 C ₉ 153.3 C ₁ 137.0 C ₁₁ 137.0 C ₁₂ 134.8 C ₁ 137.0 C ₁₂ 134.8 C ₁ 137.0 C ₁₂ 134.8 C ₁ 137.0 C ₁₂ 137.0 C ₁₂ 137.0 C ₁₃ 137.0 C ₁₃ 137.0 C ₁₄ 137.0 C ₁₅ 137.0 C ₁₆ 137.0 C ₁₇ 137.0 C ₁₇ 137.0 C ₁₈ 137.0 C ₁₉ 137.0 C ₂ 137.0		7.3-7.6	3H (m)	aromatic protons		
6.1 1H(S) -CO-CH = C 165.6 C ₂ 134.8 C ₃ 176.4 C4 protons 176.4 C4 133.6 C7 119.7 C8 153.0 C9 125.1 C6 133.6 C7 119.7 C8 153.0 C9 123.4 C10 124.4 C10 6.88-6.90 1H(d) -CH=CH - OCH, 177.8 C4 6.88-6.90 1H(d) -CH=CH - OCH, 177.8 C4 6.88-6.90 1H(d) -CH=CH - OCH, 177.8 C4 7.5-8.1 7H (m) aromatic protons 153.2 C9 124.9 C4 124.9 C4 124.9 C4 124.9 C4 124.9 C4 124.9 C6 125.1 C10 127.5 C1 128.1 C10	O					
6.1 1H(S) -CO-CH=C 165.6 C ₂ 134.8 C ₃ 134.8 C ₄ 127.8 C ₃ 127.8 C ₄ 133.6 C ₇ 119.7 C ₈ 153.0 C ₉ 123.4 C ₁₀ 153.0 C ₁ 153.1 C ₁₀ 153.1 C ₁₁ 153.1 C ₁₂ 154.8 C ₁ 159.3 C ₂ 159.3 C ₂ 159.3 C ₂ 159.3 C ₂ 159.9 C ₃ 159.9 C ₄ 159.9 C ₈ 159.1 C ₉ 159.1	a, 5, 10	2.38	3H(S)	-CH ₃	19.8	C ₁₁
6.1 1H(S) -CO-CH=C 165.6 C ₂ 134.8 C ₃ 7.3-7.6 3H(m) aromatic 176.4 C ₄ protons 127.8 C ₃ 125.1 C ₆ 133.6 C ₇ 119.7 C ₉ 153.0 C ₉ 123.4 C ₁₀ 133.6 C ₇ 119.7 C ₁₁ 119.7 C ₁₁ 119.7 C ₁₂ 110.7 C ₁₁ 110.7 C ₁₁ 110.7 C ₁₂ 110.7 C ₁₃ 110.7 C ₁₄ 110.7 C ₁₅ 110.7 C ₁₆ 110.7 C ₁₇ 110.7 C ₁₇ 110.7 C ₁₈ 1	- 19 ng					
7.3-7.6 3H(m) aromatic protons 127.8 Cs 176.4 Cd 177.6 Cc 177.8 Cd	76 I II	272	100/20			
7.3-7.6 3H(m) aromatic protons 176.4 C4 Protons 127.8 C5 125.1 C6 133.6 C7 119.7 C8 153.0 C9 123.4 C10 153.0 C9 123.4 C10 153.0 C9 123.4 C10 Protons Proton of pyrone ring 162.6 C2 Protons 162.6 C2 Protons 162.6 C2 Protons 162.6 C2 Protons 177.8 C4 6.88-6.90 1H(d) —CI = CI — OCI, 177.8 C4 129.3 C5 124.9 C6 12	O CH	6.1	1H(S)	-CO-CH=C		
protons 127.8 Cs 125.1 C6 133.6 C7 119.7 Cs 133.6 C7 119.7 Cs 153.0 C9 123.4 Cto 123.1	113	73.76	3H(m)	aromatic		
125.1 C6 133.6 C7 1119.7 C8 153.0 C9 123.4 C10 153.0 C9 123.4 C10 153.0 C9 123.4 C10 162.6 C2 177.8 C4 6.88-6.90 1H(d) — CH=CH————————————————————————————————		1.5-1.0	MI(III)			
133.6 C7 119.7 C8 153.0 C9 123.4 C10 123.4 C10 16.6 C2 11H(S) 155.3 Ar-OCF 162.6 C2 11H(S) 1				1		
153.0 Co 123.4 Cto 123.4 C						
3.85 3H(S) O-CH ₃ 55.3 Ar-OCF 55.3 Ar-OCF 162.6 C ₂ 3.85 3H(S) O-CH ₃ 55.3 Ar-OCF 162.6 C ₂ 6.20 1H(S) olefinic proton of pyrone ring 6.6-6.68 1H(d) —CH=CH—OCH, 177.8 C ₄ 6.88-6.90 1H(d) —CH=CH—OCH, 129.3 C ₅ 124.9 C ₆ 124.9 C ₇ 125.2 C ₉ 125.3 C ₁ 137.0 C ₁₁ 137.1 C ₁₂ 134.8 C ₁ ' 129.3 C ₂ ' 134.8 C ₁ ' 129.3 C ₂ ' 134.8 C ₁ ' 129.3 C ₂ ' 135.6 C ₆ 133.7 C ₇ 131.9 C ₈ 132.6 C ₈ 133.7 C ₇ 133.7 C ₇ 139.9 C ₈ 130.1 C ₉ 131.1 C ₉ 131.2 C ₉ 131.3 C ₉ 131.3 C ₉ 131.3 C ₉ 132.4 C ₁₀ 132.4 C ₁₀						
3.85 3H(S) O-CH ₃ 55.3 Ar-OCI 162.6 C ₂ 3.85 3H(S) O-CH ₃ 55.3 Ar-OCI 162.6 C ₂ 6.620 1H(S) olefinic proton of pyrone ring 6.64.68 1H(d) — CH=CH————————————————————————————————						
6.88-6.90 1H(d) — CH=CH— OCH, 177.8 C4 6.88-6.90 1H(d) — CH=CH— OCH, 129.3 C5 124.9 C6 The ethylenic bond has a trans configu- ration (J = 15.86 Hz.) 119.4 C8 7.5-8.1 7H (m) aromatic protons 153.2 C9 133.6 C1 137.1 C12 134.8 C1 129.3 C2 134.8 C1 129.3 C2 137.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10	т. О	205	211/6/	O CU-		
6.6-6.68 1H(d) — CH=CH————————————————————————————————	Ib 5 J		3H(S)			
6.6-6.68 1H(d) —CH=CH—OCH, 177.8 C4 6.88-6.90 1H(d) —CH=CH—OCH, 129.3 Cs 124.9 C4 The ethylenic bond has a trans configu- ration (J = 15.86 Hz.) 7.5-8.1 7H (m) aromatic protons 153.2 Cs 123.1 Cto 137.0 Cti 137.1 Ctz 134.8 Cti 129.3 Cz 157.6 Cz 133.7 Cs 200.9 C4 131.9 Cs 133.7 Cs 127.6 C6 133.7 Cs 127.6 C6 133.7 Cs 127.6 Cc 127.6 C	, ii	0.20	111(3)		102.0	CZ
6.6-6.68 1H(d) —CH=CH——OCH, 177.8 C4 6.88-6.90 1H(d) —CH=CH——OCH, 129.3 C5 124.9 C6 The ethylenic bond has a trans configuration (J = 15.86 Hz.) 119.4 C8 7.5-8.1 7H (m) aromatic protons 153.2 C9 123.1 C10 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10				Ll P		
6.6-6.68 1H(d) —CH=CH——OCH, 177.8 C4 6.88-6.90 1H(d) —CH=CH——OCH, 129.3 C5 124.9 C6 The ethylenic bond has a trans configuration (J = 15.86 Hz.) 119.4 C8 7.5-8.1 7H (m) aromatic protons 153.2 C9 123.1 C10 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10	, or "c"					
6.6-6.68 1H(d) — CH = CH — OCH, 177.8 C4 6.88-6.90 1H(d) — CH = CH — OCH, 129.3 C5 124.9 C6 The ethylenic bond has a trans configu- ration (J = 15.86 Hz.) 119.4 C8 17.5-8.1 7H (m) aromatic protons 153.2 C9 123.1 C10 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 133.7 C3 200.9 C4 133.7 C3 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10		NJ.				
6.88-6.90 1H(d) — CI = CH — OCI, 129.3 C5 124.9 C6 The ethylenic bond has a trans configuration (J = 15.86 Hz.) 119.4 C8 7.5-8.1 7H (m) aromatic protons 153.2 C9 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10	<u>,</u>					
The ethylenic bond has a trans configu- ration (J = 15.86 Hz.) 7.5-8.1 7H (m) aromatic protons 124.9 C6 133.6 C7 119.4 C8 119.4 C8 123.1 C10 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 129.9 C8 150.1 C9 123.4 C10		6.6-6.68	1H(d) —	-сн≑ді—⟨О)}—осн,	177.8	C4
The ethylenic bond has a trans configu- ration (J = 15.86 Hz.) 7.5-8.1 7H (m) aromatic protons 124.9 C6 133.6 C7 119.4 C8 119.4 C8 123.1 C10 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 129.9 C8 150.1 C9 123.4 C10						
The ethylenic bond has a trans configu- ration (J = 15.86 Hz.) 7.5-8.1 7H (m) aromatic protons 124.9 C6 133.6 C7 119.4 C8 119.4 C8 123.1 C10 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 129.9 C8 150.1 C9 123.4 C10		COD COD	411/4		120.2	Cr
The ethylenic bond has a trans configuration (J = 15.86 Hz.) 119.4 C8 153.2 C9 123.1 C10 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10		6.88-6.90	1H(q) —	Zi-cu-\		
ration (J = 15.86 Hz.) 7.5-8.1 7H (m) aromatic protons 119.4 C8 153.2 C9 123.1 C10 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10		The ethylenic	hand has a t	rans configu-		
7.5-8.1 7H (m) aromatic protons 153.2 C9 123.1 C10 137.0 C11 137.1 C12 134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10					119.4	
123.1 C ₁₀ 137.0 C ₁₁ 137.1 C ₁₂ 134.8 C ₁ 129.3 C ₂ 129.3 C ₂ 157.6 C ₂ 133.7 C ₃ 200.9 C ₄ 131.9 C ₅ 127.6 C ₆ 133.7 C ₇ 199.9 C ₈ 150.1 C ₉ 123.4 C ₁₀				ons	153.2	C9
137.1 C ₁₂ 134.8 C ₁ ' 129.3 C ₂ ' 157.6 C ₂ 133.7 C ₃ 200.9 C ₄ 131.9 C ₅ 127.6 C ₆ 133.7 C ₇ 199.9 C ₈ 150.1 C ₉ 123.4 C ₁₀		N.			123.1	C ₁₀
134.8 C1' 129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10						
129.3 C2' 157.6 C2 133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10						C12
157.6 C ₂ 133.7 C ₃ 200.9 C ₄ 131.9 C ₅ 127.6 C ₆ 133.7 C ₇ 127.9 C ₈ 150.1 C ₉ 123.4 C ₁₀						C ₂ '
133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C10				180		
133.7 C3 200.9 C4 131.9 C5 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C ₁₀	KV §					C ₂
131.9 Cs 127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C ₁₀	, il					C ₄
127.6 C6 133.7 C7 199.9 C8 150.1 C9 123.4 C ₁₀	6 10					Cs.
133.7 C7 199.9 C8 150.1 C9 123.4 C ₁₀					127.6	C ₆
199.9 C8 150.1 C9 123.4 C ₁₀	7 L					C7
150.1 C9 123.4 C ₁₀	, o ich				199.9	C ₈
123.4 C ₁₀ 19.8 C ₁₁	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					C ₉
19.8 C ₁₁						C ₁₀
					19.8	C_{11}

was left to cool and then poured into ice-water. The products that separated out were collected and crystallized from the proper solvents to give products which are found to be identical with (V_{b-d} & g-i).

Photocyclization of 2-styryl-4H-chromen-4-ones (III_{a,b}); Formation of 12-H-benzo [a] xanthen-12-ones $(X_{a,b})$.

Method (A)

A solution of 1 g of each of 2-styryl-4H-chromen-4-ones (III_{a,b}) in 500 ml. benzene was irradiated in a quartz immersion apparatus equipped with high pressure mercury - lamp (Toshiba 400 p) which was cooled internally with running water. Irradiation was conducted through a pyrex filter under air with stirring. The irradiation was continued till the starting material has disappeared (15-20 hrs.) The solvent was evaporated under reduced pressure and the residue was purified by crystalization from the proper solvent to give X_{a,b} respectively (cf. Table 5).

Method B

A solution of 1 g. of chromone derivatives (III_{a,b}) in 500 ml. benzene was irradiated by direct sunlight for 7 days at room temperature, the solvent was evaporated under reduced pressure and the solid separated out was filtered and crystallized from the proper solvent to yield $X_{a,b}$ respectively but the yield % of the product was less than that in method (A).

Bromination of 2-styryl-4H-ones (III_{a-d}); Formation of (Xi_{a-d}) .

To a warm solution or suspension of 2-styryl-4H-chromen-4-ones (III_{a-d}) (0.004 mol; 1.2 g) in glacial acetic acid (15 ml), bromine (0.008 mol, 0.5 ml) dissolved in 3 ml of glacial AcOH was added dropwise with continuous stirring. The reaction mixture was left overnight at room temperature, poured into ice/water. The solid deposited was filtered and crystallized from the suitable solvent to give the dibromides (IX_{a-d}) (cf. Table 5).

Action of thiourea on dibromo-derivatives (XI_{a-d}); Formation of (XII_{a-d}).

In a 250 ml round-bottomed flask fitted with reflux condenser were placed 20 ml. of 95% ethanol and thiourea (0.004 mol, 0.3 g). The mixture was

heated under reflux on a steam bath. About 0.002 mol, 1g, of dibromide was added, then the reaction mixture was refluxed for 5 hrs., then 20 ml of 95% ethanol was added. After the reaction mixture had been cooled, potassium hydroxide solution (0.02 mol, 1.5 g in 10 ml of distilled water) was added to the reaction mixture and the latter was refluxed again for another 5 hrs., coold and acidified with cold conc. sulphuric acid. The product that separated out was filtered off, washd with water, dried and then crystallized from the proper solvent, to give XII_{a-d} (cf. Table 6). In the same wasy the products XII_{a,b} were obtained in the high yield by the action of urea on the dibromides (XI_{a,b})...

Action of thionyl chloride on 6-chloro-2-methylchromone (II); Formation of XIII

The chromon (II) (0.02 mol, 3.9 g) was dissolved freely in benzene (50 ml), the thionyl chloride (0.80 mol, 7 ml.) was addedand the reaction mixture was refluxed for 3 hrs. on a water bath at 70°C. A solid began to deposit after one hr. The solid obtained after concerntration under fuming cupboard was collected and purified by crystallization to give XIII (cf. Table 7).

Action of aqueous alcoholic potassium hydroxide on (XIII); Formation of XIV

A mixture of 1 g of compound XIII and aqueous ethanolic 10% KOH (20 ml.) was heated under reflux for 3 hrs. The solid that separated out after cooling and acidification by 10% cold sulphuric acid was filtered off and crystallized from the proper solvent to give XIV as brown solid (cf. Table 7).

Thiation of 6-chloro-2-methylchromone (II); Formation of 6- chloro-2-methyl-4H-chromen-4-thione CXV

Method (A) by Lawesson's Reagent

To chromone (II) (0.01 mol; 1.9 g) in dry toluene (20 ml) was added (0.005 mol; 2.02 g.) of 2,4-bis (4-methoxyphenyl) 1,3,2,4-dithiadiphosphetane 2,4-disulphide (Lawesson's Reagent).

The reaction mixture was refluxed for 30 minutes and the red crystalline solid that deposited after cooling was collected and crystallized from the proper solvent to give XV.

Method (B): By Phosphorus Pentasulphide

A mixture of chromone (II) (0.01 mol; 1.9 g.) and phosphorus pentasulphide (0.02 mol. 4.6 g.) was refluxed in dry xylene (50 ml.) for 4 hrs.

The reaction mixture was filtered off while hot, left to cool at room temperature and the solid that separated out was crystallized from the proper solvent to give a solid which was found to be identical with the product of method (A). (cf. Table 7).

Effect of alkaline hydrogen peroxide on chromone (II); Formation of XVII and 5-chlorosalicyclic acid

To 2 g. of the chromone (II) dissolved in 30 ml. of methanol and one ml. of 4N aqueous sodium hydroxide, hydrogen peroxide (4 ml, 18%) was added dropwise with continuous stirring for 2 hrs. while the reaction mixture was cooled to 5-8°C using ice-NaCl mixture. The reaction mixture was left at room temperature overnight and then neutralized with cold dilute (10%) sulphuric acid. The solid precipitated was washed with water,

dried and crystallized from the proper solvent to give 5-chloro-2- hydroxyphenyl glyoxal (XVII) (cf. Table 7).

When the above reaction was conduced by 30% hydrogen peroxide; 5- chlorosalicylic acid was isolated and identified.

References

- 1. S.M. Sami, A.A. Sayed and S.S.Ibrahim, Egypt.J.Chem., 23(5), 337 (1980).
- 2. Auwers and Wittig, Ber., 57, 1270 (1924).
- 3. I.Yokoe, K. Higuchi, Y. Shirataki and M. Komatsu, *Chem.Pharm.Bull.*, **29**(9), 2670 (1981).
- A.A. Sammour, M.I.B. Selim and Y.A El-Rehim, J. Chem. U.A.R., 12, 493 (1969).
- M.A.I. Salem, A.M. El-Gendy and S.L. El-Nagdy, Ain Shams. Sci. Bull., 27 ('1985) (in press).
- 6. M. Sainsbury, Tetrahedron 36, 3327 (1980).
- A.A. Sammour, M.A. El-Kassaby, M.A. Hassan and M.A.I. Salem, *Egypt. J. Chem.*, 19(6), 989 (1977).
- 8. J.R. Merchant, A.R. Bhat, and D.V. Rege, *Tetrahedron Letters*, 20, 2061 (1972).
- 9. I.Thomsen, K. Clausen, S. Scheibye and S.Lawesson, *Organic Synthesis*, **62** 158.