Some Reactions on 4-Aryl-2-Substituted Amino-1,6-Dihydro- 6-Thioxo-1,3,5-Triazines

G.E.M. MOUSSA, M.E. SHABAN*, S.I. EL-NAGDY, A.F. EL-KAFRAWY AND A.A. SAAD Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt.

(Received 24th May, 1986; revised 4th March, 1987)

Summary: 4-Aryl-2-substituted amino-1,6-dihydro-6-thioxo-1,3,5-triazines (IVa- \mathfrak{L}) react with methyl iodide, acrylonitrile and acetic anhydride to give 4-aryl-2- substituted amino-6-methylthio-(Va- \mathfrak{L}), 4-aryl-2-substituted amino-6-(β -cyano) ethylthio-(VIa- \mathfrak{L}), 1,3,5-triazines and 4-aryl-2- substituted amino-1-acetyl-1,6-dihydro-6-thioxo-1,3,5-triazines (VIIa- \mathfrak{L}), respectively. The structure of the products are discussed on the light of their chemical and spectroscopic properties as well as analytical data.

Introduction

The chemistry of 1,3,5-triazines had received great attention in the last years as some of their derivatives were shown to have herbicidal activity [1]. In a previous investigation [2] we reported the synthesis of some 1,3,5-triazine derivatives (IVa-c). Therefore, it seems desirable to extend the work on the 4-aryl-2-substituted amino-1,3,5-triazine derivatives (IVa-c) which have not been fully investigated, in an attempt to obtain more precise information about the course of alkylation, acrylonitrilation and acetylation.

It has been reported [3] that 2-tert, butylmer-capto-4-phenyl-thioxo-1,3,5-triazine (Ia) reacts with diazomethane to give a mixture of S-methyl derivative (IIa) and N-methyl derivative (IIIa) in ca.85 and 10% yield, respectively. However, treatment of the same compound with methyl iodide and sodium hydroxide gave only the S-methyl derivative (IIa). Other 2-substituted derivatives (Ib-e) gave the corresponding S-methyl derivatives on being treated with methyl iodide in presence of sodium hydroxide.

9;x= t·C₄H₉S b;x= C₆H₅CH₂CH₂, CH₃ s;x= C₆H₅ d:x= C₂H₅O e;x= N(CH₃)₂

Recently, it has been reported [4] that alkylation of If(X = OH) with methyl, ethyl, isoamyl iodides and benzyl chloride, in presence of sodium hydroxide, gave the corresponding S-methyl, ethyl, isoamyl and benzyl derivatives, respectively. Compound (Id: $X = OC_2H_5$) has been reported [3] to undergo disproportionation on being refluxed with dimethylformamide to give 4(6)-oxo-2-phenyl-1,4,5,6-tetrahydro-6(4)-thioxo-1,3,5- triazine (44%), 6-ethoxy-4-ethylmercapto-2-phenyl-1,3,5-triazine (38%) and 1,6-dihydro-2-ethylmercapto-6-oxo-4pheynl-1,3,5- triazine (1%). However, treatment of the same compound with a mineral acid gave only If (X = OH). Oxidation of Ic with iodine in presence of triethylamine gave the corresponding disulphide. On the other hand, oxidation of Ic with hydrogen peroxide in presence of sodium hydroxide gave the O-analog, namely, 2,4- diphenyl-6-oxo-1,6-dihydro-1,3,5-triazine. Tosato [5] has shown that isomerization of trithioisocyanurates to thiocyanurates by action of heat occurs sequentially.

Treatment of IV <u>a-c</u> with methyl iodide in presence of sodium hydroxide, affords the corresponding S-methyl derivative (V <u>a-c</u>) (cf. Scheme 1):

The structure of V was substantiated from (i) elemental analysis (cf. Table 1), (ii) the UV spectra showed identity and in agreement with that pre-

Table 1: Characterization data of V, VI and VII

Com-	Ar	$R_1 R_2$	m.p.°C	Yield	Mol.			Found (%)	(Calcd)	
pound					Formula	С	Н	N	S	Cl
Va ₁	C ₆ H ₅	-CH ₂ -CH ₂	115	68	C15H18N4S	62.9	5.7	19.0	11.0)
		CH ₂ -CH ₂ -CH ₂				, (62.9	6.3	19.6	11.1)
Va ₂	C ₆ H ₅	-CH ₂ -CH ₂	112	7 0	C14H16ON4S	58.0	5.3	19.4	11.3	
		O -CH ₂ -CH ₂			÷	(58.3	5.6	19.4	11.1)
Va ₃	C ₆ H ₅	H CH ₃ CH ₂ CH ₂ CH ₂	87	72	C14H18N4S	61.0	6.3	20.0	11.4	
Ma.	CH					(61.3	6. 6	20.4	11.7)
Va ₄	C ₆ H ₅	H C ₆ H ₅ CH ₂	126	71	C17H16N4S	66.5 (66.2	5.1 5.2	17.8 18.2	10.3 10.4)
Va ₅	C ₆ H ₅	H p.CH3C6H4	128	75	C17H16N4S	66.6	5.4	18.0	10.6	
						(66.2	5.2	18.2	10.4)
Va ₆	C ₆ H ₅	H p.CH3OC6H4	133	73	C ₁₇ H ₁₆ N ₄ OS	62.4 (62.9	4.4 4.4	17.7 17.3	9.6 9.9)
Va7	C ₆ H ₅	H C6Hs	111	75	C. H. M.C	•				
		11 (011)	111	13	C16H14N4S	65.5 (65.3	4.5 4.8	18.8 19.1	10.7 10.9)
Vb ₁	$C_6H_5CH = CH$	=	114	78	C ₁₇ H ₂₀ N ₄ S	65.3	6.3	17.8	10.5	•
		CH ₂ -CH ₂ -CH ₂				(65.4	6.4	18.0	10.3)
Vb2	C6H5CH = CH	-CH ₂ -CH ₂	120.21	7.	6.11 11 00					
. 02	Consen-en	0	130-31	76	C16H18N4OS	61.4 (61.1	5.6 5.7	17.9 17.8	9.8 10.2)
Vb ₃	CALCH CH	-CH ₂ -CH ₂		_						
V 03	$C_6H_5CH = CH$	H CH ₃ CH ₂ CH ₂ CH ₂	80	74	C16H20N4S	63.6 (64.0	7.0 6.8	18.6 18.7	10.8 10.7)
Vb4	C&HsCH = CH	H C ₆ H ₅ CH ₂	123	75	C19H18N4S	68.6	5.6	16.3	9.8	
						(68.3	5.4	16.8	9.6)
Vb ₅	C ₆ H ₅ CH = CH	H p.CH ₃ .C ₆ H ₄	140	70	C19H18N4S	68.5 (68.3	5.3 5.4	17.0 16.8	9.7 9.6	
Vb6	C ₆ H ₅ CH = CH	H p.CH30C6H4	118	63	C19H18N4OS	,)
		201000014	110	03	C191118144C/3	65.3 (65.1	5.2 5.1	15.8 16.0	9.2 9.1)
Vb7	$C_6H_5CH = CH$	H C ₆ H ₅	137	68	C18H16N4S	67.3	5.3	17.3	10.2	
Vc ₁	p.ClC6H4	CH. CH.	106			(67.5	5.0	17.5	10.0)
V C1	р.с.с.	-CH ₂ -CH ₂ CH ₂	1 2 6	69	C15H17N4SCI	56.3 (56.2	5.5 5.3	17.2 17.5	10.1 10.0	10.9 11.1)
Vc2	p.CiC6H4	-CH ₂ -CH ₂	175-77	77	C14H15N40SCI	52.0	4.6	17.3	9.9	11.1
		-CH ₂ -CH ₂				(52.1	4.7	17.3	9.9	11.0)
Vс3 <u>р</u> .	ClC ₆ H ₄	H CH3CH2CH2CH2	98	7 0	C14H15N4SC1	54.9	5.0	18.5	10.6	12.0
						(54.8	4.8	18.3	10.4	11.6)

Continued Table 1:

_	•	n.	D.	m.p.°C	Yield	Mol.	Found (%) (Calcd)				
Com- pound	Ar	\mathbf{R}_1	KQ	т.р. С	Tield	Formula	С	Н	N	Ś	a
Vc4	p.ClC6H4	Н	C ₆ H ₅ CH ₂	134	63	C ₁₇ H ₁₅ N ₄ SCl	60.0 (59.6	4.3 4.4	16.2 16.4	9.8 9.4	10.4 10.4)
Ves	p.CIC6H4	н	p.CH3C6H4	137	64	C ₁₇ H ₁₅ N ₄ SCl	59.8 (59.6	4.4 4.4	16.3 16.4	9.3 9.4	10.3 10.4)
Vc6	p.ClC6H4	н	p.CH3OC6H4	141	60	C ₁₇ H ₁₅ N ₄ OSCl	57.1 (56.9	4.0 4.2	15.8 15.6	8.7 8.9	10.1 9.9)
Vc7	p.ClC6H4	Н	C6H5	167	63	C ₁₆ H ₁₃ N ₄ SCI	58.6 (58.5	4.2 4.0	17.0 17.1	9.7 9.7	11.0 10.8)
VIa ₁	C ₆ H ₅	Н	CH ₃ CH ₂ CH ₂ CH ₂	118	75	C16H19N5S	61.5 (61.3	5.9 6.0	22.0 22.4	10.1 10.2)
VIa ₂	C ₆ H ₅	Н	C ₆ H ₅ CH ₂	166	73	C19H17N5S	66.0 (65.7	4.7 4.9	20.5 20.2	9.1 9.2)
VIa ₃	C ₆ H ₅	Н	p.CH3C6H4	175	72	C19H17N5S	65.9 (65.7	5.1 4.9	20.2 20.2	9.1 9.2)
VIa4	C ₆ H ₅	H	p.CH3OC6H4	156	73	C19H17N5OS	63.1 (62.8	4.9 4. 7	19.0 19.3	9.0 8.8)
VIa5	C ₆ H ₅	H	C ₆ H ₅	157	65	C18H15N5S	65.2 (64.9	4.6 4.5	21.2 21.0	10.1 9.6)
VIb ₁	$C_6H_5CH = CH$	Н	CH3CH2CH2CH2	165	63	C18H21N5S	63.8 (63.7	6.3 6.2	20.8 20.6	9.4 9.4)
VIb ₂	C ₆ H ₅ CH = CH	Н	C6H5CH2	128-29	68	C21H19N5S	68.0 (67.6	5.3 5.1	18.9 18.8	8.8 8.6)
VIb ₃	C ₆ H ₅ CH = CH	Н	p.CH3C6H4	172	68	C21H19N5S	67.7 (67.6	5.0 5.1	19.0 18.8	8.5 8.6)
VIb4	C ₆ H ₅ CH = CH	H	I p.CH3OC6H4	156-58	66	C21H19N5OS	64.7 (64.8	5.1 4.9	18.2 18.0	8.2 8.2)
VIb5	C ₆ H ₅ CH = CH	H	I C6H5	165	63	C20H17N5S	67.1 (66.9	5.0 4.7	19.2 19.5	9.0 8.9)
VIc ₁	p.CIC6H4	H	I CH3CH2CH2CH2	109	75	C16H18N5SCI	55.1 (55.3	5.4 5.2	20.3 20.1	9.1 9.2	10.2 10.2)
VIc ₂	p.ClC6H4	F	I C6H5CH2	168	60	C19H16N5SCî	60.0 (59.8	4.3 4.2	18.7 18.4	8.1 8.4	9.5 9.3)
VIc ₃	p,ClC6H4	I	1 p.CH3C6H4	173	74	C19H16N5SCI	59.9 (59.8	4.4 4.2	18.2 18.4	8.6 8.4	9.5 9.3)
Vlc4	p.ClC6H4	F	p.CH3OC6H4	166	65	C19H16N5OSCl	57.6 (57.4	4.1 4.0	17.6 17.6	8.3 8.1	8.8 8.9)
VIcs	p.CIC6H4	ŀ	I CaHs	186	68	C18H14N5SC1	59.1 (58.8	4.0 3.8	19.0 19.1	8.8 8.7	9.6 9.7)

Continued Table 1:

Com-	Ar	R ₁ R ₂	m.p.°C	Yield	Mol.	Found (%) (Calcd)				
pound					Formula	С	Н	N N	S	CI
VIIa ₁	C ₆ H ₅	H CH ₃ CH ₂ CH ₂ CH ₂	185	65	C15H18N4OS	59.9	6.1	18.6	10.6	
						(59.6	6.0	18.5	10.6)
VIIa2	C6H5	H C ₆ H ₅ CH ₂	197	73 ·	C18H16N4OS	64.5	4.6	16.8	9.8	
						(64.3	4.8	16.7	9.5)
VIIa3	C ₆ H ₅	Н р.СН3С6Н4	195	65	C18H16N4OS	64.4	5.0	16.7	9.4	
						(64.3	4.8	16.7	9.5)
VIIa4	C6H5	Н р.СНзОС6Н4	192	65	C18H16N4O2S	61.5	4.7	16.1	9.1	
						(61.4	4.5	15.9	9.1)
VIIa5	C ₆ H ₅	H C ₆ H ₅	199	67	C17H14N4OS	63.6	4.3	17.5	10. 1	
					01/1144 4400	(63.4	4.4	17.4	9.9)
VIIb ₁	$C_6H_5CH = CH$	H CH3CH2CH2CH2	105	63	C17H20N4OS	62.4	6.2	17.3	10.0	
				55	C1/1120/ 140 3	(62.2	6.1	17.3	9.8)
VIIb2	C ₆ H ₅ CH = CH	H CallsCH2	169	73	C20H18N4OS	66.6	4.8			ŕ
			107	13	C20H18N4OS	(66.3	4.8 5.0	15.7 15.5	8.9 8.8)
X 7XX1	0.11.611.611					•				,
VIIb3	C6H5CH = CH	H p.CH3C6H4	178	65	C20H18N4OS	66.2	4.9	15.6	8.6	
						(66.3	5.0	15.5	8.8)
VIIb ₄	$C_6H_5CH = CH$	H p.CH3OC6H4	183	73	C20H18N4O2S	63.6	4.8	15.0	8.7	
						(63.5	4.8	14.8	8.5)
VII _b 5	$C_6H_5CH = CH$	H C ₆ H ₅	173	63	C19H16N4OS	65.8	4.7	15.	99.3)
						(65.5	4.6	16.1	9.2)
VIIc ₁	p.ClC6H4	H CH3CH2CH2CH2	187	65	C15H17N4OSCI	53.6	5.2	16.9	9.7	10.8
						(53.5	5.1	16.7	9.5	10.6)
VIIc ₂	p.ClC6H4	H C ₆ H ₅ CH ₂	198	77	C18H15N4OSCI	58.3	4.2	15.3	8.5	9.8
						(58.3	4.1	15.1	8.6	9.6)
VIIc3	p.CIC6H4	H p.CH3C6H4	201	73	C18H15N4OSC1	58.5	4.2	15.0	8.8	9.5
						(58.3	4.1	15.1	8.6	9.6)
VIIc4	p.ClC6H4	H p.CH3OC6H4	152	<i>7</i> 7	C18H15N4O2SCl	56.2	4.0	14.6	8.5	9.1
		-		•	21011011402001	(56.0	3.9	14.5	8.3	9.1
VIIc5	p.CIC6H4	H C ₆ H ₅	205	65	Carthantosca	57.1	2.0	15.0	0.0	10.0
	•		203	ω	C ₁₇ H ₁₃ N ₄ OSC ₁	57.1 (57.2	3.9 3.7	15.9 15.7	8.8 9.0	10.3 10.0)

 $Compounds\ Va_{1}\hbox{--}a7, Vb_{1}\hbox{--}b7\ and\ Vc_{1}\hbox{--}c7\ were\ recrystallised\ from\ n-hexane.}\ Compounds\ VIa-c\ and\ VIIa-c\ were\ recrystallised\ from\ benzene.$

viously reported [3] for similar compounds (cf. Table 2) and (iii) acidic hydrolysis of V (a3-a5) gave the corresponding 4-substituted amino-6-phenyl-1,2(or 1,4)-dihydro-1,3,5-triazin-2-ones (cf. experimental) which were identical in m.p. and mixed m.p. with authentic specimens [4].

Acrylonitrile reacts with (IV a-c) in presence of pyridine, as a base, to give 4-aryl-2-substituted amino-6-(β -cyano)ethylthio-1,3,5-triazines (VI₂- ε). We belive that the function of pyridine, as a base, is to facilitate the conversion of IV into the intermediate pyridinium salts (A) and/or (B). Typical intermediate salt [4] has been isolated in the reaction of 6-phenyl-1,2,3,4(or 2,3,4,5)-tetrahydro-4-thioxo-1,3,5-triazine with amines, (cf. Scheme 2).

(B = pyridine) Scheme 2

The structure assignment of VI was based on: (i) elemental analysis (cf. Table 1), (ii) formation of 6-phenyl-4-substituted amino-1,2 (or 1,4)-dihydro-1,3,5-triazin-2-ones by acidic hydrolysis of VIa₁-a₃ (cf. experimental) indicate that the acrylonitrilation took place via the intermediate (B) rather than (A). The products of hydrolysis showed no depression on admixture with authentic spicmens [4]. (iii) UV spectra showed similarities and in accordance with that reported [3] for S- substituted-1,3,5-triazines (cf. Table 2) and (iv) spot tests [6] indicated the absence of C=S function.

Acetylation of IVa-c with acetic anhydride gave the corresponding 1-acetyl derivatives (VIIa-c)

The structure of VII was assigned from: (i) elemental analysis (cf. Table 1), (ii) IR spectra exhibited bands at 1670-1640 cm⁻¹ (tert. amido C=O), (iii) the electronic spectra showed similarties with that reported [3] for thiono-1,3,5-triazine derivatives (cf. Table 2) and (iv) the C=S function in (VII) was proved by spot tests [6].

All melting points are uncorrected. Infrared and electronic spectra were measured on a Unicam SP 1200 spectrophotometer (KBr discs) and Beckman DK-2A Ratio Recording spectrophotometer (in absolute methanol), respectively.

Table 2: Electronic spectra of V, VI and VII

Compound	λ _{max} .(nm)	log € max
/as	260(sh.)	4.520
α,	255	4.538
/a ₆	265	4.367
	252	4.434
	212(sh)	4.066
/b ₁	295	4.389
	2 40	4.270
	225	4.222
	218	4.213
Vb7	297	4.267
	277(sh.)	4.181
	225	3.886
	218	3.996
Vc1	250	4.426
Vc ₂	249	4.587
VIa ₂	238	4.383
VIa3	267(sh.)	4.567
	255	4.630
	213(sh.)	4.322
VIb3	300	4.048
	282(sh.)	3.964
	223(sh.)	3.738
	218	3.750
VIbs	300	4.546
	277(sh.)	4.435
	225(sh.)	4.228
	218	4.251
VIc ₁	265	4.635
VIIb3	307	4.406
	250-265	4.153
	217	4.361
VIIc ₁	250	4.305
VIIc3	248(sh.)	4.123
-	232	4.321
	220 (sh.)	4.228

Action of methyl iodide on IVa-c; Formation of 4aryl-2- substituted amino-6-methylthio-1,3,5-triazines (Va-c):

To a well stirred solution of IV(0.01 mol) in sodium hydroxide solution (0.5 N; 30 ml) and ethanol (70 ml) was added methyl iodide in dropwise. The reaction mixture was heated gently on a water-bath for 1 hr. The solution was kept for 12 hr at room temperature then diluted with water (100 ml) whereby a solid product was separated out. The product obtained was filtered, washed thoroughly with water and recrystallised from suitable solvent to give (V a-c). The characterization data of Va-c are given in Table 1.

Action of acrylonitrile on (IVq_-c); Formation of 4aryl- 2-substituted amino-6-(β -cyano)ethylthio-1,3,5triazines (VIq_-c):

Triazine (IV) (0.01 mol) was added in portion-wise to a solution of acrylonitrile (3 ml), pyridine (50 ml) and water (10 ml). The reaction mixture was refluxed for 6 hr followed by reduction the original volume into its half by distillation under reduced pressure. Dilution the reaction mixture with water (150 ml) gave a solid product which was filtered, washed with water and dried. Recrystallisation the solid product from appropriate solvent afforded (VIa-c) (cf. Table 1).

Action of acetic anhydride on (IVa-c); Formation of 1- acetyl-4-aryl-2-substituted amino-1,6-dihydro-6-thioxo-1,3,5-triazines (VII \mathbf{q} - \mathbf{c}):

A mixture of IV (0.01 mol) and acetic anhydride (5 ml) was heated on a water-bath for 3 hr and then cooled to room temperature. The reaction mixture was diluted with water whereby a solid

separated out. The product obtained was filtered, washed with water and dried. Recrystallisation the solid product from appropriate solvent gave VIIa-c (cf. Table 1).

Hydrolysis of Va₃-a₅ and VIa₁-a₃; Formation of 6-phenyl- 4-substituted amino-1,2(or 1,4)-dihydro-1,3,5-triazin-2-ones [4]:

To a solution of V or VI (0.01 mol) in acetone (100 ml) was added aqueous sulphuric acid (1N; 10 ml). The reaction mixture was heated on a waterbath for 1 hr, left over-night at room temperature and poured on ice-cold water (150 ml), whereby a solid was separated out. Authentic samples [4] were prepared and shown by m.p. and mixed m.p. experiments to be identical with these products.

References

- M.A. Floyd and S.C. Alden, "Mode of action of herbicides", second edition, California, John Wiley & Sons (1981).
- 2. G.E.M. Moussa, M.E. Shaban, A.F. El-Kafrawy, E.I. El-Nagdy and A.A. Saad, *Oriental J. Chem. (India)* (in press, Volume THREE, Number ONE, 1987).
- 3. J. Goerdeler and J. Neuffer, *J. Chem. Ber.*, **104**, *1580* (*1971*).
- M.N. Basyouni, M.M. Habashy, A.A. El-Khamry and M.M. El-Adly, *Egypt. J. Chem.* 23, No.4, 243 (1980).
- 5. M.L. Tosato, J. Chem. Soc. Perkin Trans., 2, 1371 (1979).
- 6. F. Feigl, "Spot test in organic analysis", sixth edition, New York, John Wiley & Sons, 243, 246 (1960).