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Summary: The floating spherical gaussian orbital (FSGO) model has been used to compute
energy and orbital parameters for the H2 molecule using concentric, non-concentric and cusp func-
tions. The zesults are discussed in terms of well known localized and non-ocalized molecular orbital

theories.

Introduction

The floating spherical Gaussian orbital (FSGO) mo-
del of molecular structure using single Gaussians has
yielded good quantitative features of the electronic and
geometric structures of a number of molecules.!

Double gaussians have been used to improve mole-
cular energies and geometties.2 In certain case, analysis
of energy terms affecting the geometry of various mole-
cules, has been affected. All this has been achieved
using the concept of localized orbitals through which
the molecular orbital method of Hund‘, Mulliken® and
Lennard Jones® is related to the original valence bond
method due to Heitler and London’ and Slater® and

Pauling®. Mathematically speaking, the molecular orbi- -

tal wavefunction is represented by a single determinan-
tal wavefunction while a singlet state valence bond wave-
function is represented by a linear combination of
Slater’s determinats. In case the electron pairs forming
a bond for a valence bond wavefunction occupy the
same orbital, the linear combination of determinants is
then represented by a single determinant.

The purpose of this paper is to show as to how a
simple FSGO model using multiple gaussians for H,
molecule throws light on the energy, bond distance and
other relavent parameters. The results obtained from
single, double (cusp concentric), tripie (two cusp and
one concentric), four and five guassians in various ways
have been tabulated and compared with the experimen-
tal values for energy and bond distance for the H, mole-
cule. Cusps are gaussians centered on the nuclei.

Orthogonal and nonorthogonal orbitals: Energy of a clos-
ed-shell system.

Each localized spherical guassians orbital function
has the form:

0 @=(—2—" exp [(alo))] M
T p;

with variable ‘orbital radius’ p; and variable position.
These orbitals are nonorthogonal and require a rather
complex energy expression involving three and four
orbital interaction.

The electronic energy formula for a Slater determi-
nantal wavefunction for closed shells of orthogonal orbi-
tals, x; is well known:

E, = 22i (i/i] +i7:‘j 2[ii/ji] — il @

summations are from 1 to n unless otherwise indicated;

il = X bxdv 3)

are one electron integrals involving the one electron
Hamiltonian operator
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Z, being the atomic number of nucleus v and 1, the dis-
tance of the electron from that nucleus. N is the number
of nuclei;

ij/kd] = X% O fx D%, )%, (2)

(U/ry,)dvy dvy )

are the two-electron repulsion integrals. Equation (2) is
obtained from

E =x/y*HydT........ dT,,
with the total Hamiltonian

2n 1
H = i§1 hi +i?j 5 (6)

and
¥ =(1/2n!) det (x; x; Xy X5 . ... X,)

The original non-orthogonal orbitals ¢; may be trans-
formed to an orthogonal set x;- This may be achieved by
a nonunitary transformation converting the overlap
matrix to the unit matrix. Lowdin!® has shown such
transformations for a determinantal wavefunction of 2n
orbital all with parallel spin. For a closed-shell case the
transformation from the original non-orthogonal orbitals
¢; to an orthogonal set X; may be carried out by the
following formula given in matrix notation

X = oT* ™

where T = S is the inverse overlap matrix and x and ¢
are row vectors of the comesponding orbitals, S and T
are assumed to be real. The integrals of Equation (3)
may then be transformed to give

TUA=Z T (/R (T (D) =

1

PRUCEN ®)

whore

@0= 5o n A

similarly

Z Uil = 2 MW T T, ©)
and

D= 2 (T T, (10)
where

K/pd =S¢ (g (l)sp; (2 eq D)

173 dv dv, an

(Here the parenthese refer to integrals over nonorthogo-
nal orbitals while the brackets involve orthogonal orbi-
tals). The electronic energy then becomes

Eq=22G0 T+ 2 (W/pg)
[2Ty) Tpg — Tiq Typ) o

and the total energy is then

E=F I% ___71&52_ 3
- el+M<, rl-“’ (1)

after adding the internuclear repulsion energy.
The FSGO model and the H. 5 molecule

The initial parameters and coordinates are fixed at
random; the molecule is then allowed to relax to achieve
its most stable nuclear configuration. The values of co-
ordinates and normalized coefficients after equilibrium
for the H, molecule using various basic orbitals have
been listed in table I.

With only two nuclei with +1 charges and a pair of
electrons with paired spins form a singlet electronic
state. The localized orbitals ¢, are not required to be
orthogonal. The 2n — electron wavefunction may be
written as a single slater determinat

¥=Nipg; ()¢, v, Gre (4). ...
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9 201) 9, (20) | (14)
with the normalizing factor
N=1/[(20)!]” det (15)

The bars over orbitals indicate f§ spin as opposed to «
for others. Det S is the determinant of the orbital over-
lap matrix S with element

S, = fe @ dv (16)

The energy is varied to determine the best localized orbi-
tals followed by the calculation of such observalbe pro-
perties as bond angles, bond distances, kinetic and total
energies.

The main aim her has been to obtain a relatively
simple model of calculation to reproduce major trends
in electronic geometric structure of H, molecule and not
to seek a solution of the Schrodinger wave equation
which has so abundantly been done. The calculation are
here strictly ab initio with no semiempirical parameters
involved.

Results and Discussion

In table I are listed the basic orbital sets used which
vary from single to five gaussian containing cusp, con-
centriz and nonconcentric orbitals along with their
orbieai radii. First two columns show energy values -E
and kinetic energy T.

The simplest calculation is in the case of one spheri-
cal gaussian surrounding two hydrogen nuclei for which
the resuits have been reported in reference 1 at number
2. The bond length here is accurate within 3% of the
experimental value, while the energy is off by about
20%. Our calculation agrees completely with the calcula-
tion of reference 1.

The inaccuracy in the energy calculation has been
attributed to lack of cusps in the wavefunction and
hence the lack of electron density at the nuclei (ref 1
number 1). Our second calculation in table I has been
done by using two cusp orbitals which somewhat im-
proves the energy value (from 0.9559 hartrees to 0.9808
hartress) but enlarges the bond distance from 1.4742 to
1.5551. The lengthening of the boand distances with
double cusp orbitals is understable in terms of decrease
of charge density between the nuclei which significantly

increases the nuclear-nuclear repulsion term and hence
increases the bond distance. Double nonconcentric orbi-
tals behave in a similar fashion as the double cusps. The
double nonconcentric have the tendency to become
double cusps when allowed to float. This is clear from
their orbital radii given in table I (1.644 bhors for
double cusps) and (1.654 bohrs for non-concentric) and
their nuclear coordinates (1.555 bohrs for doubie cusps)
and 1.555 bohrs for nonconcentric).

It is known that the electron density is given by the
following equation

y=2n § ¢* ¢ dT,....dT,, dn;

n
=22 x* x; 17
21 % X an

dT; = dv; dn;; where dv; is the volume element of the
electron i and dn is the spin coordinate. For non ortho-
gonal orbitals ¢, the corresponding result can be obtain-
ed by applying the transformation of equation (7) to

give
7= 2],_;2 9 b Tjk (18)
If 9 be normalized floating Gaussian functions

9,= 2 ajny* exp [-a, (r - R)’] (19)

where the orbital exponent a; and the components of
the orbital vector R, are variation parameters. In the
present model, the electron density and ‘orbital radius’
may be related in the following way.

The paramter a; in g, is replaced by

8 = ——— (20)
P
= fapdyh R 21

so that g, = (2fp{)" exp [(r-R}) /,,i] i Q1)
The new parameter p, is termed an “orbital radius” and
has the dimensions of length.
Integrating

4nflig? 2 di, ~074 (22)
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Table L. Calculated resuits for H, molecule with full minimization. All quantities in atomic units. Distance in bohrs.

Energies in Hartrees.
No Orbitals —Energy Kinetic Orbital Bond Normalized Orbital
energy Radii length coefficient positions
1. Single 0.95594 095576 1.7717 1.4742 - -
2 Double cusps 0.98080 0.98071 1.6442 1.5551 0.55227 -
1.6442 0.55227
3 Double 0.98155 0.98216 1.6536 1.5546 0.54592 +0.72932
non concentric 1.6536 0.54592 —0.72932
4 Double 1.03815 1.03804 2.3061 1.2634 0.66669 -
concentric 1.0958 0.41819
5 Triple 1.09826 1.09792 2.0921 0.7776
two cusps 0.8099 1.3935 0.1941 -
one concentric 0.8099 0.1941
6 Four orbitals 1.10414 1.10412 1.96686 14143 0.1702 +0.63697
two cusps 1.96686 0.1702
two non concen. 0.7566 04314 —0.63597
0.7566 04314
7 Four orbitals 1.11254 1.11242 2.6421 1.3589 0.4818
two cusps 1.4527 0.4668 -
two concentric 0.6369 0.1117
0.6369 0.1117
8 Five orbitals 1.11520 1.11518 23111 1.3705 0.3054
four cusps 23111 0.3054
one concentric 0.6193 0.1036 -
0.6193 0.1036
1.3282 0.3658

Expt. vatues : Bond distance = 1.4006

—Energy =1.1745
The orbital radius is therefore interpreted by say-
ing that it is the radius of the sphere containing about
74% of the orbital density. Table I lists orbital radii for
cusp, concentric and nonconcentric orbitals which con-
tain about three fourths of the electron density.

The values of bond distance, energy E and kinetic
energy T are also listed in table I. For H,, the experi-
mental value of energy E (-1.1745 hartrees) and bond
distance (1.4006 Bohr) compared well within 20% of all
values obtained for eight calculations.

The values obtained for triple gaussian calculation
(two cusps and a concentric) gives the best overal fit
reproducing bond distance with almost complete accu-
racy and the energy value of 1.09826 hartrees which is
within 6% of the experimental vaine. Addition of more

orbitals of various kind, as is expected, improves the
energy value but spoils the bond distance. Using five
gaussian orbitals, one obtains energy value which is off
by less than 5.

The virial theorem expressed as - E = T is satisfied
by all calculations except perhaps for the calculatio with
two non concentric orbitals where the kinetic energy
increase is larger than -E. The difference, however, is
less than 1%. the virial theorem is obeyed as expected
since in all our calculations a scale factor is a variation

pammeter1 2 .

It is, therefore, apparant that the FSGO model gives
fairly encouraging results with various multiple gaus-
sians. The best results for the bond distance and energy
are those where the cusp as well as concentric orbitals
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have been used. This points to the fact that the best elec-
tron density distribution is the one where the electron
density between the nuclei as well as on the nuclei is
fairly represented.
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