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Separation of the Molecular Motions of a Diatomic Moiecule
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Summary: An attempt is made to show in a straightforward way how a body-fixed (BF) frame
of reference may be constructed for a diatomic molecule such that rotational and translational
motions could be described as motions of the BF frame and internal (vibrational and electronic)
motions could be described with respect to the BF frame. A diatomic molecule is a special casc
which we do not need to impose any condition, such as the Eckart's conditions, on the BF frame.
The correct form of the total angular momentum operatoss is derived quantum mechanically.
The Hougen-Watson isomorphic Hamiltonian is rederived. For conformity, the method is
developed in strict analogy to the first author's previous works, with the necessary variations for

the diatomic molecule.

Introduction

From the spectrum of a molecule we can ob-
tain, in general, experimental information on the
relations between the structure and physical
properties of molecules. Investigation of the rota-
tion-vibration spectra of polyatomic molecules, for
instance, is of basic importance for determining
precise molecular geometry in different vibrational
states, for obtaining information on molecular force
ficlds, vibration-rotation interaction parameters,
dipole moments, and calculation of ther-
modynamics function [1].

The spectra of atoms are only due to
electronic transitions, whereas the molecule’s
spectrum depends on the characteristics of the
nuclear motions as well as on the electronic mo-
tions. The motions of the nuclei are three kinds: the
translational motion of the molecule as a whole,
which is discarded because of no spectroscopic in-
terest; the rotation of the molecule; and the vibra-
tions of the nuclei within the molecule.

The molecular motions are not independent
of cach other, and interactions between them are
responsible for the complexity of their spectra. Fur-
thermore, the existance of several sources of an-
gular momenta, and consequently a variety of ways
of coupling them together make such a complexity
even worse. It is clear that if such a complex
spectrum can be analyzed the information obtained
should be correspondingly great.

A molecule containing N nuclei and n
electrons has 3 (N +n) independent cartesian coor-
dinates with respect to a labroatory fixed frame (LF
frame). In order to separate translational, rotation-
al, vibrational, and electronic modes. of molecular
motions, we may transform the set of 3(N+n) LF
cartesian coordinates {Ri f=XY,Z; A=12,.,
(N+n)} to a set of generalized coordinates {qt:
1=12,..3(N+n)}, called molecular coordinates,
defined by subsets {3 translational}, {3(or 2) rota-
tional}, {3N-6(orS) vibrational}, and {3n
electronic} variables. The corresponding transfor-
mation in the hamiltonian operator for the energy
of the molecule gives an expression in which the
energy of each separate motion and the interactions

between each two motions are very revealing, Fur-

thermore, the Born-Oppenhcimer approximation
[2-4] which approximates the nuclear and electronic
motions independent, becomes more clear in the
transformed hamiltonian operator.

The present account is writien as an attempt
at a modern presentation of the separation of the
molecular motions of a diatomic molecule which is
necessary for understanding the fine structure of
their spectra and the spectroscopic aspects of the
applications already mentioned. A  diatomic
molecule may be regarded as the prototype of all
other molecules and therefore, the present calcula-
tion could be a guide for the corresponding treat-
ment of a polyatomic molecule in general [5,6,14).

*To whom all correspondence should be addressed.

*In this article, the Index A refers to a general particle, and the indices f,g,h refer to a general direction of

the LF frame axes.
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As a result of the absence of a third rotational
variable in a diatomic molecule (and a linear con-
- figuration in general), the BF frame* components
of total angular momentum do not obey the usual
commutation relations for angular momenta (the
LF frame components, of course, behave normally).
It can nevertheless be shown that if the hamiitonian
is subjected to a unitary transformation in such a
way to introduce the third rotational variable as an
independent variable, then the BF frame com-
ponents of total angular momentum would behave
normally and the awkward angular terms in hamil-
tonian would be dropped out.

Section 2 is devoted to the general theory, and
rest of the paper illustrates the theory.

2. Hamiltonian and total angular momentum

If a collection of coulomb interacting particles
have cartesian coordinates R = {R¢d} with respect
to a lab-fixed coordinate system, with the conjugate
momenta {Pi}, then the classical hamiltonian of
the whole system is:

H = /2m, + V (R) (1)

fA fx

where V(R) is the potential energy of the entire sys-
tem and consists of all the coulomb interactions be-
tween all pairs of particles.

Since the rule of correspondence in quantum
mechanics is valid for cartesian coordinate systems
[13], the operator form of (1) is simply:

= = 2

H = h_._._.__

£y 2m;\ /aRfl + V (R) (2)
and the Schrodinger equation is:

[ h2 2 2

23 - 3%aRe + V(R)yg = Bg  (3)

The hamiltonian (2) as a function of cartesian
coordinates RiA and derivatives with respect to
them / R, can be transformed to a new set of real
generalized coordinates q={ } if the transforma-
tion laws for the coordinates:
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Rey = Rey (@ (8

and the derivatives

(5)
a/aRf

\ = ZT (3q, {BRfA)BIBqT
are known. As it can be guessed, the wavefunction
in g- space is different from that in R-space. In fact,
if yq is the wavefunction in g-space, then the nor-
malization condition for the two spaces is :

*

I
[quJq qu‘r Ve waA fa

b

a r'rE dar =1  (6)

where g'”z is the jacobian of the transformation J{
Red/ ) which is the determinant of the matrix
formed by values Rgl;

- Therefore, we may define

- 2 3
Vg = (pq '8) *yq (7)

In some coordinate system a volume element of the
form is conveniently used, where the weight
factor q is some function of the coordinates q. In
this case we may define:

= (p2 /5% (8)
(pq/g) by

By substituting for / Rg and yR from (5)
and (8) in (3), the hamiltonian operator in terms of
generalized coordinates can be derived.

For a system of particles the operators for the
components of total angular momentum with
respect to the origin of a lab-fixed cartesian coor-
dinate system are defined by

R 3/ 3R

5
ghx Stgn Bg, ¥ By, @)

J f = = lh
in which efgh is the permutation symbol defined in
the appendix. When expressed in terms of the
generalized coordinates q, then eq. (9) becomes

W,

=L
= Cing a“m\a)a!aqT (10)

gha efgh

*See section 3 for the definition of the BF frame
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=L J. 1afsq ab
T T T

where [J¢, ]is the commutator between J¢ and
Transformation equations to generalized coordinate

In oder to separate the translational, rotation-
al, vibrationnal, and electronic variables as com-
pletely as possible, we may transform the LF
cartesian coordinates of the nuclei and electrons int
the molecule to a moving body-fixed (BF) frame
through the following steps:

(i) Shifting the origin of the LF frame to the
molecular center of mass, keeping the axes parallel,
in order to separate the translational variables.

(i) Shifting the origin from the molecular
center of mass to the nuclear center of mass, keep-
ing the axes parallel, in order to separate electronic
variable from the nuclear variables.

(iif) Without shifting the origin, changing to
the BF frame in order to separate the nuclear
framework rotational variables from the nuclear
framework vibrational variables.

_ If the position of a particle (an electron or a
nucelus) is R4 in the LF frame and 14 in BF frame,
then the general transformation equation may be
formulated as (Fig.1).

rA_—- R)\_ Rl—d (12)

where R is the position of the molecular center of
mass with respect to the LF frame:

R=:f m

A (13)

R./M
)\l
with M = E1 my4 the total mass of the molecule.
Here d is a vector from the molecular center of
mass to the nuclear center of mass. Since the origin
of the BF frame is at the nuclear center of mass*

(Two nuclei of the diatomic molecule are taken
along the 7 axis of the BF frame)

zm.r.=0

: 14
1 12) (s

MOLECULAR MOTIONS
therefore,
d=-R + Zi miRilmN (15)
= - (m/M) ZS re (16)
A \//f-
ih
7 VARY
///. BF FRAME (€
%
7y
¥
Vs
LF FRAMEEH

Fig.1: Transformation to the ﬁF frame system. £ (@ =
xy,z) are the unit vectrs along the BF frame axes, and ¢ (f =
X,Y,Z) are the unit vectors along the LF frame axes.

where my; is the total mass of the nuclei and the
second identity comes from the molecular center of
mass condition. Introduing (15) into (12) we may
write

r, = Rs - Zi miRiImN (17
for electrons, and
rzj = R]. - Ei miRilmN (18)

for the nuclei.

If the instantancous distance between the two
nuclei R is taken as a vibrational variable, then

R =[5 (Rgy - RDP1® (19)

Before closing this section, we may sum-
marize the transformation equations to the
molecular coordinates as:

*In this article the indices 1,j refer to the nuclei; s,t to the electrons and u is a general rotational variable.
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j=v)
1]

E;\me)\’M (20)

3

R = [5,(R;, - ReDP1P (21)

r, = Rs - Ei miRilmrl (22)

and the rotational variables which are implicitly
contained in (17) and (22) will be discussed in next
section,

4. The calculation of 3q1/3Red

In Section 3 we derived the transformation
equations from the old coordinate (LF frame coor-
dinates) to the new coordinate (molecular coor-
dinates). To be able to obtain the molecular
hamiltonian we need to calculate, as the first step,
the derivative of the molecular coordinates with
respect to the LF frame coordinates and upon in-
sertion into (5). It should be noted that equation (5)
in terms of molecular coordinates can be written as

o aRf, = gE(aRg/aR“) ale +

5 (au/aR“) 3l 3u +

(aRlaRf A) 3 3R

+ §S (arY S/BRf)\)Blarys (23)
From (20)
_ -1
aRglaRf,\ = mAM § fg (24)

and from (12)

aRfAlaRg = sfg (25)

Here &gy is the Kronecker delta symbol.

The evaluation of wu/ R (the BF frame is at-
tached to the nucle ar framework of the moiecule)
requires a mathematical trick as follows. Since the
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vectors ea along the BF frame axes are orthog onat
ea.eff = dap, it follows that the derivative of these
unit vectors with respect to the nuclear coordinates
Rii, in the most general form can be written as

deg/oRy = euxw; (26)

where Wt are some vectors to be deter-
mined. If e are the unit vectors along the LF frame
axes, then (26) can be written as

o i
( BEY /aRfl) = eg. (_E:Yxmf)

‘g
Eu (BCngau) (au/aRfi) (27)

where Cgy = egey equals the cosine of the angle
between the axiseg of the BF system and the eg of
the LF system. The matrix constructed from Cgd (g
= X,Y,Z; ¥y = x,y,2) is designated by C. Since L is
orthogonal, then C* ( C/ U) is a skew- symmeric
matrix and can be written in terms of skew-sym-
metric matrices eafy = (ea)d as follows

T
(C BC/BU)BY = Za XUU. (ea) By (28)

C _ fau =1L X

gy B (e )

ue Cgg Cley (29

where Xua are some coefficients. Introducing (29)
into (27) we obtain easily

i -1

aulaRfi SLwe (X 7) (30)

ol

where X! is reciprocal to X. The form of matrices
(ea)Bd and (X'l)a,u are given in the appendix.

The matrix C contains three independent
rotational variables of which two arc sufficient to
specify the orientation of a linear configuration in
space. Therefore, we may let the third variable
enter into the calculation as an arbitrary parameter,
let this arbitary parameter be called y, then from
(30)

-1

_ _ i
aXIaRfi =0 =L, fo (x )ax

*a B,y go over x,y,z unless otherwise explicitly indicated.
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Thus
i - sawd (@=xy), 3D
wfz a o f
where
A -1
Aa = _(x )UX {(x -)zx— (32)

From (30) and 31) we may write
i -1

aulaRﬁ =L w £ (y )ccll (0= Xx,¥) (33)

For the two rotational variables u, where the 3x3
matrix Y1 is defined by

- -1 -1
1

e = X Doy T A, xD) (33"

(y zu

The form of matrix Y is given in the appendix.

Note that the inverse derivative R/ Rp, from
(21) (12) and (16) as

MRplau =3 (Cp low) (r;6, + a)

(34)

The derivative of the vibrational variable R
with respect to the nuclear coordinates Ry, from
(21) is as follows.

z!

Note that the nuclear number 2 is taken on the
positive side of the z axis.

Finally, from (22) and (26), the derivative of
the electromic variables with respect to the LF
frame coordinates are

arYSlath = GSthY (36)
and
_ -1 i
arYSIaRﬁ = - mymy CfY twg (rS XeE)
(37)

MOLECULAR MOTIONS

We devote the rest of this section to the
derivative of some very useful identities which we
shall use them in the following sections.

By chain rule of djfferentiation, we can write
£.(3q _.3R =
2(8q .3 f)\) (aRm/aqU) 8., (38)

therefore, if we take {u,R, or rys} and = Rg,
then from (25) and (38) we arrive at the conclusion
that

I =
A(BquaRfA) 0 (39)
and in particular
1_
Ei“fa“ 0] (40)
Now, in (38), let both and = u, then from

(30, (34), (29}, and the above results, we obtain

5o . )
fi‘wfa Za eCLBZ (.«I-B Pzi =1

which implies

o, = lep (e,xe, VIR (o= 3,y ) (41)

Hence

) -11i i

_ -1
fi ™ Yfoq Ufq

I 78,0 (o= x, y) (42)

with 2

I =R (43)

as the instantaneous moment of inertita of the
diatomic molecule.

For polyatomic molecules a rigorous method
of calculating &' s is provided by the conditions
which are imposed on the BF frame. The conditions
actually employed are known as the Eckart’s condi-
tions [7]. For the details of the method, the reader
is referred to references cited [5,6,14].

5. Total angular momentum in terms of the
molecular coordinates

In next section we shall show that the
molecular hamiltonian can be very nicely formu-
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lated in terms of the BF components of the
electronic and the total angular momentum of the
diatomic molecule. Therefore, it is reasonable to
continue our discussion with the derivation of the
angular momenta in terms of the molecular coor-
dinates.

To obtain the angular momentum (10) in
terms of molecular coordinates, we need to calcu-
late the commutator between J¢ and those coor-
dinates as follows. Using equations (24), (26), (33),
(35), (36), and (37) with the extensive help of (31),
{40), and (41), it is easy to verify that

[Jf,Rg] = ih Eh efgh Rh (49)

1

[Jpul =ih E, Cpo (y )y (49

[IgR] = 0 (46)

and

ihzC A I.e

vl = TINELe AL TaapTps (4T

[Jf,r

The commutator between Jf and €8 by using
(26), (31), and (41) can be also calculated as

[Jf,cs] = jh EgX € ih z, Cfu.Aa (asx:z) (48)

Introducing (44)-(47) into (10) gives

J. = ih 3/ 3R

f ah fgh h ¥

b ‘ -
o Cfa [ih Eu (y )aualau + AGLZ(49)

where the electronic angular momentum Lg is
defined by

afsr (50)

La = ~ ih ZBY s eaBYrBS -
The first term in (49) is the angular momen-
tum of the center of mass of the molecule with
respect to the origin ofthe LF frame, and the
second term is the total angular momentum of the
molecule about the center of mass. We shall con-
tinue to use the same notation Jr for the angular
momentum operators about the center of mass:
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_ . -1
Jp =%, Cp lih I (+7) jafau + A L) (51)

If Jris projected along the BF frame axes, the com-
ponents Jo are then

J =3 e (Cfan + J C ) (52)

or

; -1
Ja ih zu G )
tih &

0m'c)/ au + AaLz +

s Cuaghy D

where (48) has been vsed. Here (52) comes
from the fact that Jo does not commute with Cge as
seen from (48). We see that the only source of an-
gular momentum along the z axis of the BF frame is
the z component of the electronic angular momen-
tum (as it ought to be).

6. Molecular translational-rovibronic hamiltonian

Having obtained all the required relations, let
us turn to derive the molecular hamiltonian in
terms of the molecular coordinates. To do this, we
substitute from (24), (33), (35), (36) and (37) for
the derivatives in (23), and inserting resultant ex-
pression into (2). To simplify the result, we take ad-
vantage of the indentitics (39)-(43) and the
expressions (48), (50), and (53). We obtain the
molecular hamiltonian as

H =
Ttrans.+ Trot-int.+

Telec.+ v (54)

Tyip, *

with

T = ~ h2v2 oy
trans. R (55)

I |
Trot--in'c . 21

%lhezaBAB) (Ja_ La_ ¥ihe

Za(Ja— La+

A,

zagh g 99

- 02 a/rRZy3R)
22

Tyib = (57)

2
Tolee. = - %—-— L V: « =h% .
Y

st Vg ) (58)
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where, Ttrans, Tvib. and Teice. Tepresent the transla-
tional, vibrational, and electronic contributions to
the total kinetic energy of the molecule, respective-
ly. The second term is the contribution of rotational
kinctic energy and the energy of interactions (be-
tween vibrations and rotations plus electronic mo-
tions) to the total kinetic energy of the molecule.
Finally, the last term is the potential energy of the
entire system of electrons and nuclei.

7. Transformation to an isomorphic hamiltonian

As pointed out in introduction, the hamil-
tonian (54) has the disadvantage that the com-
ponents of the total angular momentum Ja {with
respect to the BF frame) do not satisfy the usual
commutation relations. In fact, it is rather easy to
show that

(g Tp) = -dihe g, B (A3 + 34D, (59)
which is quite different from the simple relation

(60)

[Ja’JB] = - ih ZY a8y J\‘r

applicable to non-lincar molecules [S]. This
anomaleous behaviour comes from the fact that the
third rotational variable y is an arbitrary parameter.
If we let this parameter be an independent variable,
we may remove this difficulty. Let us write the ex-
plicit expressions of Jo for both a linear (eqs. (53)
and 44) and a non-linear (sec ref.5) molecule.
These are as follows, respectively:

Jx - iih:'\)r = -ih{sin y3/36 - ¢sc Qcos x3 [a¢) +
cot § cos xJz
Jy - }ih.\x =-ih(cos x3/fag + csc gsin y3/fa¢) -
cot osin xJ, J, = L, (61)
and

»o=- ih(sin xa/ 30 - csc peos x? /) +

1
cot cos Jz

er = -ih(cos x9/38 + csc osin yalag) -
cot B@sin xJ'z

Jo= - imalay (62)

MOLECULAR MOTIONS

1t should be emphasized that x in (61) is an
arbitrary parameter. Comparing (61) and (62), we
sce that we need to do the following changes in
order to bring (61) in normal forms (that is, the
forms which obey the usual commutation relations)

-taking the parameter y as an independent
variable;

-calling the right hand sides of the first two
equations JI'y, J'y, respectively;

-defining a new z component of angular
momentum as J’; = ih / x

Inserting the above changes into the hamil-
tonian (54), we obtain a synthetic hamiltonian [9]
whose eigenfunctions have one more variable and
therefore one more quantum number than the
eigenfunctions of the true hamiltonian. However, a
simple restriction on the synthetic hamiltonian
singles out that portion of the full hamiltonian
which is isomorphic with the true hamiltonian: only
eigenvalues of the synthetic hamiltonian that are
eigenvalues of the true hamiltonian are those cor-
responding to the cigenvalue zero of J’z - L.

It can nevertheless be shown, as presented
below, that the above treatment is formally
equivalent to a unitary transformation of the true
hamiltonian [10,8].

+
Hiso = UHU (63)
and the true eigenkets:
[E»Lso = U]E> (64)

It is not hard to show that the operators H
and Hiso have the set of eigenvalues E. Let us fix x
in (61) to a value £ and define

U= exp[i(x—e)Lzlh] (65)

This choice of U corresponds to a rotation of
the BF frame through y — ¢ about the z axis. All
terms in (54), except the second, are invariant
under this unitary transformation (because of the
cyclindrical symmetry, the potential energy V com-
mute with L, and therefore with U). Thus we may
concentrate on the transformation of the summa-
tion in the second term which can be written as
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+ +
ruU(Ju- Lﬂ*uhelaBAB)u U(Ju- Lu -Hhe!usAB)U =

+ +
LIUG, + dihe, A OU" - UL )

+
[U(Ju ~4ih yu - ULGU 1 (66).

A
208
We can write

IJ(JX- uh.\y)U= -ih[sin{c~ x+ x)alae-csc pcos (e- x+ x)3/34)
+cot peos (€-x + ;()l.z
= cos (x-o) (3", - A, (3, - L] -
sin(x-0) [Ty + A", - L)), (67)
similarly
0, + §iha '
=sin -9 [} - A "z - L]
+ cos (x-e) [3'y + A (', - ;)] (88)

where J%, ’y,'and Tz have the ’same forms as
those in (62).

In the transformation of La (a¢=xy) we use
the following operator identity which is valid for
any two operators A and B:

we obtain

ULyUJ', = si_n (x—c—:)Lx- cos (x_—E)Ly(ﬁg)

Now we impose the restriction mentioned in
the second paragraph of the present section and in-
troduce (67)-(69) in the second term of (54). The
isomorphic hamiltonian becomes

H =T + T

.+
iso trans. rot.-int.

T + T

vib. elect. + vV (70)

Where Tirans., Tvib. and Tejec, are given by (55),
(57), and (58), respectively and

; -1 ) 2
Tooting, = 8 L (g - L* (e=x,y) (71)
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Finally, it should be emphasized that the ex-
pressions (54) and (70) are valid provided that (
/2)"% in (18) does not depend_on the molecular
coordinates. Taking = Y'R? (see A5 for the-
definition of Y*), then (  /g)'* becomes a con-
stant and the forms (54). and (70) remain un-

changed [5,6].
Appendix: The matrices (ex)gd, x !, and Y!
The definition of the permutation symbol:

. =+1iap ~ incyclic order,
aBy
=-1ia,8,y notin cyclic order,

= 0 twe indices slike {Al)

implies that
000 ¢ 0 -1
e ={0 € 1 | e = 0 00
Cy

0-1 0 1 0 0

€
b
[ -
(=] [~
(=] <

(A2)

This matrices are also introduced in ref. (11)

Taking the eluerian angles 8, ®, y as the rota-
tional variables and using the convention of Wilson
et al. (12) for these angles, then from(28) and the
above matrices, it is straightforward to show that

siny ~COs 8cosy cot B¢os )
x~1__
=7l cosy esch siny -cotd sin x (A%
0 0 1
Then (33’) gives
sinx -¢sc cosy 0
T'1= _ cosy esc  sinx 0 (Ad)

0 0 0

The determinant of the first block of Y.
equals ¢sc 6, so that

Y' = sin @ {AS)
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