Some Reactions with 2:3-Indolone Derivatives

R.M.ABDEL-RAHMAN, A.M.ABDEL-HALIM, S.S.IBRAHIM AND E.A. MOHAMED

Chemistry Department, Faculty of Education, Ain Shams University, Cairo, Roxy, A.R. Egypt.

(Received 28th September 1985, Revised 12th October, 1986)

Summary: 1,2,4-Triazol (4,3-a)-indol-3-one, N¹-(5-thioxo-1,2-dihydro-1,2,4-triazol-3-yl) indol-2,3-dione, indole-(3,2-b) quinoxaline, 4,5-tetrahydro-1,3-diazin (2,1-a) indol-3-hydrazone, 5,6-substituted 1,2,4-triazin-3-one, 1-(3-imino indol-2-one)pyrimidin-2,4-dione, 3-[2-(5-benzylidene-4-thiazoli-dinone)diazo] indol-2-ones and 2-thioxo-1,3-diazin-5-one derivatives have been synthesized through the interaction between indole-2,3-dione and various bifunctional compounds.

All the compounds have been characterized by their IR and elemental analysis. A representative number of compounds have been characterized by $^1\mathrm{H-NMR}$ spectral studies.

Indole-2,3-dione (I_a) has become of increasing importance in recent years owing to its pharmacological properties [1-4], in addition to its use as 1,2-dicarbonyl compound for the syanthesis of several heterocyclic compounds [1]. These observations prompted us to undertake the synthesis of related compounds containing the indole nucleus. The results were explained on the basis of reactions mechanism theories.

It has been observed in the present work that isatin I_a reacts with ethyl chloroformate in the presence of pyridine [5] yielding the ethyl ester derivative I_b , which on treatment with arylamine, hydrazine hydrate and thiosemicarbazide in dry benzene gave the corresponding anilide (I_c) , hydrazide (I_d) and thiosemicarbazide (I_e) respectively. Monoacetylhydrazido-

derivative (I_f) was obtained by warming I_d with glacial acetic acid for few minutes.

(I)

$$\begin{array}{ccc} (I_a) & \frac{R}{H} \\ b & COOC_2H_5 \\ c & CONHC_6H_4Br-p \\ d & CONH NH_2 \\ e & CONHNHCSNH_2 \\ f & CONHNHCOCH_3 \end{array}$$

Compound $I_{\rm d}$ underwent ring closure when heated with glacial acetic acid-sod. acetate to give 1,2,4-triazolo(4,3-a) indol-3-one (II), while cyclization of $I_{\rm e}$ under the same

condition gave N^{1} -(5-thioxy-1,2-dihydro-1,2,4-triazol-3-yl) indol-2,3-dione (III).

3-Alkyl or (aryl) imino and 3-mono hydrazone-indol-2-one (IV_{a-e}) have been obtained by normal condensation of I_a with various aliphatic (or aromatic) amines and hydrazine hydrate [6]. Reductive cyclization of IV_c gave indole-(2,3-b)-quinoxaline [7] V.

a
$$CH_2CH_2OH$$
b 4 -pyridyl
c $C_6H_4NO_2$ -o
d C_6H_4Br -p
e NH_2

Condensation reaction of IV $_{\rm e}$ with I $_{\rm a}$ gave the bis compound VI, while IV $_{\rm e}$ when condensed with unsaturated aldehyde under the same condition yielded the conjugated system VII.

$$\begin{array}{c|c}
 & N & N & CH - CH = CH \\
 & N & O \\
 & H & (VII)
\end{array}$$
(IV)

The reactivity of the exocyclic conjugation system-C=N-N=C- with the olefinic group =CH-R in VII promoted us to investigate its behaviour towards the action of thiophenol derivatives. Thus, when VII is fused with excess 2-methyl or 4-chloro thiophenol, the sulphides VIII were obtained according to the 1,4-addition.

Condensation of IV_e with ethanol amine afforded the imino derivative IX, which was cyclized using Ac_2O -pyridine to give compound X.

Sulphonyl hydrazone derivatives $XI_{a,b}$ have been obtained through the condensation of I_a with p-sulphone hydrazide acetanilide and the reaction of IV_e with 4-toluene sulphonyl chloride in pyridine media [8].

The reaction of I_a with 1-cyanoguanidine led to the formation of cyanoguanidone derivative XII.

Acid hydrazides of isatin XIII $_{a-c}$ were obtained [9] by condensation of I_a with some acid hydrazide derivatives in absolute ethanol-glacial acetic acid. Acidic hydrolysis of XIII using hydrochloric acid, gave the β -ketocarboxylic acid derivative XIII $_d$.

When IV_d was allowed to react with aryl acid hydrazide, compound XIII_c was obtained. On the other hand XIII_c was directly obtained from the reaction of I_a and aryl acid hydrazide. Identification of XIII_c obtained by both the methods was established by comparison of their ir, its bands

$$\begin{array}{c|c}
 & \text{H} & \text{SAr} \\
 & \text{N} - \text{N} - \text{CH} = \text{CH} - \text{CH} \\
 & \text{N} & \text{O} \\
 & \text{N} & \text{O} \\
 & \text{N} & \text{O} \\
 & \text{N} & \text{C}_{6}^{\text{H}}_{4}^{\text{CH}}_{3}^{\text{-O}} \\
 & \text{b} & \text{C}_{6}^{\text{H}}_{4}^{\text{Cl-p}} \\
 & \text{N} & \text{N} \\
 & \text{H} & \text{N} & \text{N} \\
 & \text{HO-CH}_{2}^{\text{-CH}}_{2} \\
 & \text{(IX)} & \text{(X)}
\end{array}$$

$$(1_{a})$$

$$(1_{a})$$

$$(1_{b})$$

$$(1_{$$

power of acid hydrazido group and the imino groups [10] as shown in the scheme I. as well as by mp., mmp. In this reaction the displacement of 3-arylimino group by the phenyl acid hydrazido function occured due to the difference between the nucleophilic

hydrazide (2:1) gave rise to the bis compound XIV, which when reacted with semicarbazide hydrochloride in dry THF [11], gave 5,6-disubstituted-1,2,4-triazin-3-one XV. Condensation of I_a with oxalyl

Isatin-3-semicarbazone XVI₈ [12] underwent ring closure on heating with

absolute ethanol to give N¹-(imino-indol-2-one-3-yl)-4-methyl-6-phenyl -pyrimidin-2-one XVII.

Ф

The reaction of ethylbenzoylacetate [14], with isatin-semicarbozone (iminoindol-2-one-3-yl)-6-phenyl-pyrimidin-2,4-dione XVIII, the reaction take place as shown in Scheme-II). XVI_a in alcoholic medium, gave N¹

3-[2-(5-Arylidene-4-thiazolidinone)been synthesized [1], by treating isatine thiosemicarbazone XVI_h [13],

(XIII_C) (Ar =
$$C_6H_4Br-p$$
, Ar = C_6H_5)

Scheme I

Scheme II

and different aryl aldehydes in glacial acetic acid.

Cyclocondensation reaction of XVI_b with p-hydroxyphenyl-pyruvic acid in absolute ethanol, followed by potassium carbonate soln. gave 2-thioxo-1,3-diazin-5-one derivative XX [15].

Finally, condensation of I_a with 2-hydrazinobenzimidazole gave XXI, which was cyclized to give the condensed heterocyclic compound XXII [7].

Experimental

Melting points of all synthesized compounds are uncorrected. Infrared spectra were recorded on Perkin-Elmer (model-337) in KBr Pellets. PMR spectra were recorded in (TFA) on Perkin-Elmer (model-RB-12; 60 MHz). TMS was taken as an internal standard.

Indol-2:3-dione I_a was synthesized according to the method of W.C. Sympter [16].

Formation of Ib:

To a soluti on of I_a (0.01 M) in dry pyridine (50 ml) was added ethylchloroformate (0.02 M) and the reaction mixture was refluxed for $\frac{1}{2}$ hr, cooled and acidify with dilute hydrochloric acid. The solid obtained on dilution was filtered and recrystallized to give I_b (cf.Table-1).

Reaction of amine, hydrazine and thiosemicarbazide with I_b -formation of I_c , d, e:

A mixture of I_b (0.01 M), p-bromoaniline, hydrazinehydrate and thiosemicarbazide (0.01 M) in dry

benzene (100 ml) was refluxed for 2 hr. The reaction mixture was cooled and the solid obtained was filtered and recrystallized from the proper solvent to give I_{c,d,e} respectively (cf.Table-1).

Acylation of I_d : Formation of I_f :

A mixture of I_d (0.01 M) and $Ac_2O-AcOH$ (1:1-50 ml) was refluxed for $\frac{1}{4}$ hr. and cooled. The solid obtained was recrystallized to give I_f (cf. Table-1).

Cyclization of I_d : Formation of II:

A mixture of I_d (0.01 M) and Ac_2O -Pyridine (1:1-50 ml) was refluxed for 4 hour, cooled. The reaction mixture was poured on ice then acidified with hydrochloric acid. The solid obtained was recrystallized to give II. (cf., Table-1).

Cyclization of I_e : Formation of III:

A mixture of $I_{\rm e}$ (0.01 M), glacial acetic acid (50 ml) and sodium acetate (slight excess.) was heated for 4 hours, cooled then poured on ice. The solid obtained was recrystallized to give III (cf., Table-1).

Condensation of I_a with amines : Formation of I_{a-d}^{V} :

A mixture of I_a (0.01 M) and the appropriate amine namely (ethanolamine, 4-aminopyridine, 2-nitroaniline, and 4-bromoaniline) (0.01 M) in absolute ethanol, was refluxed for 2 hr. The reaction mixture, on cooling gave a solid precipitate which was filtered and recrystallized to give the products (cf., Table-1). PMR of Compound IV_a as shown in Table-II.

VIIIb)
1
(IP
Compounds
of
Data
Physical
ij
Table-I:
Tab

8	**			Table-I	Table-I: Physical Data of Compounds (Ib -	ata of C	spunodwo		VIIIb)	8				
p c mo		2	Vialy	vel 100 low	Analysis	I.R	. Spectr	a of the	I.R. Spectra of the New Compounds (cm^{-1})	unds (cm	-1)			
No.	Solvent			formula	Found/calcd.	.cd.			5 9		endo- cyclic	exo- cyclic		
					Sulphur		Ж	NH,	Ŧ	3	0=0-	0		
								7				Ļ	C=N	S=2
Į.	C, H	185	06	C ₁₁ H ₉ NO ₄	ī	ı		ı	L	2950	1730	1630	1600	1
) H	C2H50H	268	80	C15H9N2Br 03	•	ĵi	3	1	3320	1	1740	1640	1600	1
, ¹ _c	C2H50H	240	70	C ₉ H ₂ N ₃ O ₃	•	•	1	3350	3190	1	1680	1650	1590	1
, [—] a	сн ³ 0н	195	70	C10H8N4SO3	12,00	12.00	ĸ	3390	3250	I,	1670	1650	ı	1200
)	e Se								3180			1620		с
_	CH ₃ CO ₂ H	215	20	C11H9N3O4	i	ī		ţ	3300	2950	1680	1650	1580	1
									3190					
11	сн ³ со ⁵ н	235	09	C9H5N3O2	1	1	3	ļ	3120	Ī	1730	1640	1620	ı
	í											i#	1590	
Ξ	н2008н	255	09	C10H6N4SO2	13.50	13.00	1	ŧ	3250	:4	1690	1620	1595	1200
	i								3150					
IV a	с ₂ н ₅ он	150	06	C10H10N2O2	£	ı	3500	1	3320	3150	1740	ı	1610	1
u										2980			1590	
1	снзон	207	70	C13H9N3O	ı	Ü	3	ı	3200	1	1740	1	1620	1
													1580	
N C	C2H50H	275	20	C14H9N3O3	ı	Ê	1	ř	3420	Ü	1720	E.	1610	Ŋ
				2. K									1600	
* P	сн ₃ со ₂ н	260	70	C14H9N2Br0	ı	ı	1	ï	3390	1	1700		1610 -	
				i									1600	

Table-I (cont'd.)

]		-	5 5 9 2		Analysis		R. Spect	ra of the	I.R. Spectra of the New Compounds (cm^{-1})	unds (cr	n-1)			Î
No.	Solvent		G. Y.e.d	Molecular formula	Found/calcd.	alcd.					endo-	exo-	e.	I
					Sulphur	<u>s</u>	Ю.	NH ₂	H	НЭ	0=0-) } } } }	C=N	C=S
IV e	С2 ^Н 50Н	250	06	C ₈ H ₇ N ₃ O	4	•	Č	3400	3200		1680		1610	1
۸	но Енэ	280	. 02	C ₁₄ H ₉ N ₃	•		1		3400	1	ı	T	1580	I
													1590	
IA	C2H50H	222	06	$^{C}_{16}^{H_{10}^{N_4}0_2}$		×	- 1	ı	3400	3100	1720	Ĭ	1570 1620	ı
VI I	сн ³ он	190	95	C ₁₇ H ₁₃ N ₃ O	ı.	t	ř	ı	3350	2920	1720	g J	1610 1610	1
VIII	9 _{.9} 9	195	09	C24H21N3S0	8.5	8.02	ì	r	3380	1	1720	ŧ	1590	ī
VIII _b C ₆ H ₆	9 _H 9 ₂	185	09	C23H18N3SC10	7.7	7.58	1	ī	3150 3350	3050	1720	ı	1590 1620	ā
						J. Sec.			3200	2950			1600	

+ Br, Fd.: 23.00, Calcd.: 23.75; Br +, Fd: 26.8, calcd: 26.58; Cl ++, Fd: 8.10, Calcd: 8.43.

 $[\]star$ (IVb) shows absorption band at 1550 and 1350 cm $^{-1}$ due to NO $_2$ group.

Satisfactory C, H and N analysis have been obtained for all the compounds.

Tak	ıle.	. I I
ומו	115	- 1 1

Compound	Chemical	Multiplicity	Preliminary assignment
No.	Shift δ		
IV _a	4.0	Singlet	(1H)——— OH
a	3.47	Triplet	-сн ₂ сн ₂ он
	7.8	Singlet	> NH

Reductive Cyclization of IV_c : Formation of V:

A mixture of IV_c (0.01 M) and zinc dust (3 gm) in 100 ml ethanolacetic acid (50ml.-50ml) was refluxed for 4 hours. The reaction mixture was filtered hot. The solid obtained after cooling was recrystallized to give V (cf., Table-I).

Reaction of I_a with hydrazine hydrate: Formation of IV_c :

A mixture of I_a (0.01 M) and hydrazine hydrate (0.01 M) was kept at room temperature for 10 mint., 100 ml absolute ethanol was added and was heated under reflux for 20 mint. The reaction mixture was left to be cooled, for 10 mint. then added absolute ethanol (100 ml). The solid obtained was recrystallized give IV (cf., Table-I).

Condensation of $IV_{\underline{a}}$ with aldehyde and ketone : Formation of VII and VI:

i) A mixture of IV_e (0.01 M) and crotonaldehyde or isatin (0.01 M) in absolute ethanol (100 ml) was heated for 1hr., cooled and diluted with cold water. The solid obtained was recrystallized to give VII and VI (cf., Table-I).

PMR of compound VII shown:

- a) a quartet at δ 6.0 (C=C olefinic Ha)
- b) multiplet at δ 7.2 (aromatic proton).
- c) and singlet at δ 7.9 (NH).
- ii) Formation of VI:

A mixture of I_a (0.01 M) and IV_e (0.01 M) was refluxed in absolute ethanol for 2 hours. The reaction mixture was diluted with cold water and filtered off. The solid obtained was recrystallized to give VI (cf., Table-I).

Formation of VIIIa.b:

A mixture of (VII (0.01 M) and 4-methylthiophenol or 2-chlorothiophenol (0.01), was heated at 180° (oil-bath) for 6 hours. The solid obtained was triturated with petroleum ether (60-80) to give the addition products VIII respectively (cf., Table-I).

Condensation of IV with ethanol amine : Formation of IX:

A mixture of IV $_{\rm e}$ (0.01 M) and ethanolamine (0.01 M) refluxed for 4 hrs. in absolute ethanol (100 ml). The reaction mixture was cooled and

$$\begin{array}{c|c}
 & C & C \\
 & N \\
 & O \\
 &$$

$$\bigcap_{N} O \bigcap_{H} \bigcap_{N} \bigcap_{H}$$

(XXI)

the solid obtained was recrystallized to give IX (cf., Table-III).

Cyclization of IX: Formation of X:

A mixture of IX and Ac_2O -pyridine (1:4-100 ml.) was refluxed for 6 hrs., then acidified with dil. HCl and diluted with water. The solid obtained was recrystallized to give X (cf., Table-III).

Condensation of I_a with sulphonyl hydrazide derivative : Formation of XI_a :

A mixture of I_a (0.01 M) and p-sulphonyl hydrazide acetanilide (0.01M) in absolute ethanol was reflux-

ed for 1 hour. The solid obtained was recrystallized to give XI_a (cf., Table-III).

Reaction of IV_e with p-toluenesulphonyl chloride: Formation of XI_h :

A mixture of IV $_{\rm e}$ (0.01 M) and p-toluene-sulphonyl chloride (0.01 M) in dry pyridine (50 ml) was heated for 1 hour, then diluted with water, and acidified using hydrochloric acid. The solid obtained was filtered and recrystallized to give XI $_{\rm b}$ (cf. Table-III).

Condensation of I_a with 1-cyanoguanidine: Formation of XII:

A mixture of I_a (0.01 M) and 1-cyanoguanidine (0.01 M) in absolute ethanol (100 ml) was refluxed for 1 hour. The reaction mixture was cooled, the separated solid was filtered and recrystallized to give XII (cf., Table-III).

3-Substituted hydrazone-2-indolinons $XIII_{a-c}$:

A mixture of I_a (0.01 M) and acid hydrazide (0.01 M) in 50 ml of ethanol containing one drop of glacial acetic acid was refluxed on a water bath for 2 hrs. The reaction mixture was cooled, the separated solid was filtered and recrystallized from the proper solvent to give XIII (cf., Table-III). PMR of compounds XIII a-c as shown in Table-IV.

Acid hydrolysis of ${\rm XIII}_a$: Formation of ${\rm XIII}_d$:

XIII a (0.01 M) was suspended in 100 ml of hydrochloric acid (20%). The suspension was warmed on hot

Table-III: Physical Data of Compounds (IX - XXII)

	;			יייי	:-!!!. rilys	rilysicai Data U	L	COMPONINGS 1 TV	/ T T V - V				1		
į		2	5	a l	Analysis	s	80	I.R. S	I.R. Spectra of the New Compounds (cm $^{-1}$,	the New	r Compoun	ds (cm ⁻¹)			
No.	Solvent	င် ပိ	₽ %	Molecular formula	Found/calcd. sulpher	lcd.	НО	NH ₂	HN	СН	C=N endo- cyclic	-C=0 exo- cyclic	ဝးပုံ	C=N	S=3
ΧI	с ₂ н ₅ он	235	. 20	C ₁₀ H ₁₂ N ₄ 0	•	1	3500	3420	3350	3010	i	ı		1620	1
×	с ₂ н ₅ он	ab,300	09	C ₁₀ H ₁₀ N ₄	1	1	ı	3420	- 2970	2990	ì	ì	1590	1620	ā
κ IX	сн ³ со ⁵ н	185	06	C16H14N4SO4	9.1	8.8	1	3180	3400	3010	r	1720	1640	1620	Ű.
XI _b	сн ³ со ⁵ н	218	80	C ₁₅ H ₁₃ N ₃ SO ₃	10.4	10.15	t	3200	3400	3050	ï	1720	- 1600	1620	ī
*IIX	с ² н ² 0н	175	80	C ₁₀ H ₇ N ₅ 0	1	,		3310	3400	į	2210	1730	- 1610	1630)t
XIII	сн ³ 0н	220	06	$c_{11}^{H_8} M_4^{0}_2$	e T	31	x	3150	3380	2980	2250	1730	1660 1590	1620	3.
XIII p	с ⁵ н ² он	285	80	C10H9N3O2	ı	1	ı	3200	3400	3020	ï	1680	1620 1580	1600	ī
XIII	с ² н ² 0н	205	80	C15H11N3O2	ì	1	à	3200	3400	1	ь	1720	1650 1590	1610	
XIII	сн ³ он	245	09	C ₁₁ H ₉ N ₃ O ₄	ı	ı	3520	-3150	3350	3000	î	1720	1680	1600	i

Table-	Table-III: (cont'd.)	d.)													
					Analysis	s		I.R. Spi	ectra of	the New	Compounc	I.R. Spectra of the New Compounds $({\sf cm}^{-1})$			
Compd.	Solvent	် င် ပိ	e	Molecular formula	Found/calcd. sulpher	lcd.	НО	NH 2	Ŧ	Ю	C=N endo- cyclic	-C=0 exo- cyclic	٥٠	C=N	C=S
ΧΙΧ	снзсогн	ab,300	06	C18H12N604	7	au	i	, 6	3300	T s	ī	1730	1670 1610	1610	
*	н°оо°но	ab,300	09	C, oH, 3No03	5	Ĩ,	i	3200	3400	ı	ı	1740	1590	1600	1
	5			C 6 CT 6T				3320			1710		1590		
XVII	с, неон	260	99	C19H13N402	ï	1	ı	ī	3410	2990	I,	1720	1680	1600	.1
	o o												1570		
XVII1	C, H, OH	265	20	C18H11N403	•	T	ľ	,j	3400	,		1670	1620	1590	ï
))							3250							
XIX	н°оо°но	285	40	C, 8 H, N SC1, 0, 8.0	0.8%	7.94	r	Ü	3400	3020	L	1720	1	1620	1180
7	9			r 01 01	J	7		3180			1690		1590		
XIX	н оогно	265	09	C, RH, NASC1,0, 7.9	6.7 %	7.94)	ī	3400	2980	ř	1730	ī.	1610	1170
a	0				ı			3190			1700		1590		
×	C,HEOH	285	70	C18H12NASO3	0.6	8.91	3500	T	3400	2920	î	1700	1	1620	ï
	6			7					2880		1670		1590		
XXI	Dil.C, HEOH 190	Н 190	90	$c_{15}^{H_{11}^{N_50}}$	ï	ı	r	ř	3400	1	•	1700	į	1600	ī
	3 4			; ;		8		3300					1580		
XXII	D.M.F.	235	09	C15HaN5	r	3	1	Ĩ	3200	1	î	•	Į.	1610	1
										а			1600		
															ľ

+ C1, Fd: 16.95, Calcd: 17.61, ++C1, Fd: 17.5, Calcd: 17.8.

Satisfactory C, H and N analysis have been obtained for all the compounds.

 $[\]star$ XII shown absorption band at 1060 - 1080 cm $^{-1}$ [N-C(=N)-N] of guanidine.

Table-IV

Compound No.	Chemical shift δ	Multiplicity	Preliminary assignment
XIIIa	5.8	Singlet	-N(H)COCH ₂ CN
u	7.8	Singlet	> N-H (heterocyclic)
XIII	2.12	singlet	(3H)-COCH ₃
J	5.7	Singlet	-NH-CO-CH ₃ (amide)
	7.9	Singlet	> NH (heterocyclic)
XIII _C	5.55	Singlet	-N(H)-CO-C ₆ H ₅ (amide)
<u> </u>	7.1	multiplet	(5-H) C ₆ H ₅
	7.9	Singlet	> NH (heterocyclic)

plate for $\frac{1}{2}$ hr. The crystalline solid that separated was filtered, washed with cooled water and finally recrystallized to give XIII_d (cf., Table-III).

Reaction of IV_d with benzoic acid hydrazide: Formation of $XIII_c$:

A mixture of IV_a (0.01 M) and benzoic acid hydrazide (0.01 M) in 100 ml. ethanol containing few drops of piperidine, was refluxed for 4 The reaction mixture was hours. cooled, the separated solid was filtered, washed well with ethanol and petroleum ether. The solid obtained was recrystallized and identified as compound XIII (mp., mmp., spectrum). The mother liquor was concentrated and then titurated with The solid few drops of methanol. recrystallized obtained was identified as p-bromoaniline (mp., mmp, ir specterum).

Condensation of I_a with exalyl hydrazide: Formation of XIV:

A mixture of I_a (0.02 M) and oxalyl hydrazide (0.01 M) in absolute

ethanol (100 ml) was refluxed for 1 hour. The reaction mixture was cooled, the separated solid was filtered and recrystallized to give XIV (cf., Table-III).

Cyclization of XIV: Formation of XV:

A mixture of XIV (0.01 M) and semicarbazide hydrochloride (0.01 M) in 20 ml. H_2O) in glacial acetic acid was heated for 2 hrs. The reaction mixture was cooled and diluted with water. The solid obtained was filtered and recrystallized to give XV (cf., Table-III).

Condensation of isatin-3-semicarbazone with 1,3-diketons: Formation of XVII, XVIII:

A mixture of isatin-3-semicarbazone (0.01 M) and benzoyl acetone or benzoyl ethyl acetate (0.01 M) in absolute ethanol (100 ml) was refluxed for 1 hour. The reaction mixture was cooled, the obtained solid was filtered and recrystallized to give XVII and XVIII respectively (cf.Table-III).

Cyclocondensation of isatin-3-thiosemicarbazone ${\it XVI}_h$:

a) Formation of XIX:

A mixture of XVI_b (0.01 M), chloroacetic acid (0.05 M) and sodium acetate (0.01 M) was refluxed in glacial acetic acid (40 ml) for 30 minutes. An appropriate aryl aldehydes (0.01 M) was then added and the mixture was further refluxed for 6 hours. The reaction mixture was cooled, the solid obtained was filtered and recrystallized to give XIX_{a,b} (cf. Table-III).

b) Formation of XX:

A mixture of XVI_b (0.01 M) and p-hydroxy phenyl pyruvic acid in absolute ethanol (100 ml) was refluxed for 1 hour. A solution of K₂CO₃ (10%) was added and the mixture further refluxed on water bath for 3 hours. The reaction mixture was cooled and acidify with dilute hydrochloric acid. The solid obtained was filtered and recrystallized to give XX (cf., Table-III).

Conde(sation of I_a with 2-hydrazinobenzimidazole : Formation of XXI:

A mixture of I_a (0.01 M) and 2-hydrazinobenzimidazole (0.01 M) in absolute ethanol (100 ml) was refluxed for 1 hour. The reaction mixture was diluted with cold water and the solid obtained was recrystallized to give XXI (cf., Table-III).

Cyclization of XXI: Formation of XXII:

A mixture of XXI (0.01 M) and sodium acetate (0.02 M) in 100 ml glacial acetic acid was refluxed for 6 hours. The reaction mixture was cooled and diluted with cold water. The solid obtained was filtered and recrystallized to give XXII (cf., Table-III).

References

- 1. K.C. Joshi, V.N. Pathak and S.K. Jain, J. Indian Chem. Soc., LVII, 1176 (1980).
- 2. D. Gabor, L. Karoly, P. Laszlo and S. Klara, (Egyesult Gyogysyer as Taps Zergyar) Hung. C.A. 74, 88068q (1971).
- R.S. Varma and W.L. Nobles,
 J. Med. Chem., 10, 972 (1967).
- 4. D.J. Bauer and P.W. Sadler, Brit. J. Pharmacol., 15, 101 (1960).
- 5. H. Jahine, H.A. Zaher, Y. Akhnookh and Z.El-Gendy, Indian J. of Chem., 16B, 689 (1978).
- 6. I.A. Khan,
 Ph.D. Thesis, Lucknow
 University, (1977).
- 7. N.P. Buu-Hoi and P. Jacquignon, J. Chem. Soc., 3095 (1959).
- 8. H.A. Zaher, H. Jahine, O. Sherif and R. Mohammady, Indian J. of Chem., 18B, 316 (1979).
- 9. R.S. Varma and I.A. Khan, J. Indian Chem. Soc., LVIII, 813 (1981).
- R.S. Varma,
 J. Indian Chem. Soc., 55, 1052 (1978).
- 11. K. Dennis, P. William, (Dep. Chem. Univ. Alabama, Univ., Ala.) Synthesis (5), 351 (1974) Eng. C.A. 81, 5281 (1974).
- J. Daunis, R. Jacquier, M. Rigall and P. Viallefont, Bull. Soc. Chim. Fr., 2289 (1970).
- D.J. Bauer and P.W. Sadler, Brit. J. Pharmacol., 15, 101 (1960).
- H.K. Gakhar, S. Bharadwaj, A. Jain and P. Baneja,
 J. Indian Chem. Soc., LVIII, 1017 (1981).
- 15. S. Jan, N. Karel,
 (Prirodo Ved. Fak., Univ. Falackeho, Olomouc, (Zech.).
 C.A. 75, 20361v (1971).
- 16. W. C. Sumpter,
 Cham Rev. 34 407 (1944).