

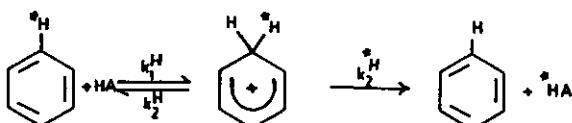
**Hydrogen Exchange Reactions of
4-(Isotopic Hydrogen Substituted)-Anisoles and
-Phenols in Aqueous Sulphuric Acid and Perchloric Acid**

RASHID IQBAL

*Department of Chemistry,
Garyounis University,
Benghazi, Libya.*

(Received 4th June, 1984, Revised 10th October, 1986)

Summary: Rates of deuterium and tritium displacement at 25° from the 4-position of anisole and phenol in aqueous perchloric acid, together with the data for the detritiation of anisole in aqueous sulphuric acid are reported. Deuterium is displaced more readily than tritium throughout and isotopic rate ratios for the exchange reactions are substantial; k^D/k^H is 3.93 ± 0.85 for anisole in perchloric acid, 6.50 ± 0.65 for anisole in sulphuric acid and 4.18 ± 1.00 for phenol in perchloric acid. The isotopic effects calculated appear to be constant over a wide range of acidity of both acids. The plots of the observed rates for dedeuteriation and detritiation against $-[\text{H}_0]$ are linear and thus consistent with an $A-S_E^2$ mechanism for the aromatic hydrogen exchange reactions. The slopes of these plots are also consistent with the earlier findings.


Introduction

The electrophilic nature of acid-catalyzed aromatic hydrogen exchange reaction was established by Ingold and his co-workers [1,2]. The mechanism of the reaction remained a subject of discussion [3-7] till Kresge and co-workers [8] established that the exchange reaction was subjected to general acid catalysis via an $A-S_E^2$ mechanism (Scheme 1) in strong acids.

For the deuterium exchange of 4-substituted ($2-\text{H}$)phenols in concentrated aqueous sulphuric acid, Gold and Satchell [3a] established a relationship between the exchange rate (k) and the Hammett's acidity function ($-H_0$) as in Equation 1 where ρ has value unity and k_0 is constant.

$$\log k = \log k_0 - \rho H_0 \quad (1)$$

The magnitude of the primary hydrogen isotope effect with respect to symmetry of transition state has often been discussed in the literature [9-11]. For a linear three-centred transition state model Westheimer [9] suggested maximum primary isotope

effect for a symmetrical transition state symmetry that was later supported by Melander [12] and Bigeleisen [10]. However, there have been some serious objections [10-11] as to the validity of Westheimer's suggestions. On the other hand, calculations of More O'Ferral and Kouba [15] based on four-centered and five-centered transition state models and those of Albery [16] for a three-centered transition state model are in full agreement with the maximum magnitude of primary isotope effect for a symmetrical transition state. In this respect, aromatic hydrogen exchange reactions have not studies which have been studied to a large extent. However, the undertaken for the exchange of substituted benzenes [17] and substituted azulenes [18] provide a good evidence for a maximum k^H/k^D ratio when the transition state is symmetrical. We, in this paper, report the results of the hydrogen exchange reactions of (4- 3H)anisole and (4- 3H)phenol in strong acids (3H refers to either 2H or 3H).

Experimental

Substrates:-

4-Bromonaisole and 4-bromophenol were B.D.H. reagent grade chemicals.

(4- 2H)Anisole was prepared by the standard Grignard procedure. An ethereal solution of the Grignard reagent prepared from 4-bromoanisole was decomposed with 99.7% deuterium oxide supplied by Koch-Light. The white solid product was extracted with diethyl ether. Fractional distillation of the dried extract furnished (4- 2H) anisole in 80% yield. The amount of 4-deuterated species in the product was estimated to be 95 mole % by mass spectrometry and NMR. Found n_D^{19} for (4- 2H) anisole 1.5179, lit. n_D^{20} for anisole [19] 1.5180. (4- 2H)Phenol was prepared by an adaptation of the method of Gilman [20]. 4-Bromophenol was dissolved in hexane and a solution of butyllithium in dry diethyl ether added. The mixture was allowed to stand at room temperature for about

Table-1: Experimental condition for Protodetritionation.

Experimental Conditions	(4- 3H)Anisole	(4- 3H)Phenol
Reaction scale (cm^3)	250	60
Approximate weight of substrate per experiment (mg)	2	10
Aliquot size (cm^3)	10	5
Volume of xylene used for extraction (cm^3)	15	10
Volume of xylene layer subjected to counting. (cm^3)	10	5
Volume of scintillator solution (cm^3)	5	5

two hours. Deuterium oxide was then added dropwise to the ethereal solution of lithium complex formed. After extraction with diethyl ether and purification, the product was fractionally distilled under reduced pressure: mp 39-40°, lit. mp for phenol [21] 41°. The amount of 4-deuterated species in the product was estimated to be 70% by NMR. (4-³H)Anisole and (4-³H)phenol were prepared by similar methods to those used for the preparation of the corresponding deuterated compound. The experimental conditions differed only in the use of tritiated water instead of deuterium oxide. Found n_D^{16} for (4-³H)anisole 1.5189, lit n_D^{20} for anisole [19] 1.5180, found mp for (4-³H)phenol 39-40°, lit mp [21] for phenol 41°.

Kinetics:

Protodetrition rates were measured from the decrease in radio activity of the substrate with respect to time by use of a liquid scintillation counting procedure. In Table 1 are listed the experimental conditions for protodetrition of (4-³H)anisole and (4-³H)phenol in concentrated acids. A small amount of tritiated substrate was dissolved in the acid solution by rapid stirring. This solution was then filtered and thermally adjusted to 25°. At various time intervals aliquots were

withdrawn and run into 60 cm³ reagent bottle containing fixed amount of xylene and sufficient amount of aqueous sodium hydroxide to quench the reaction. The bottles were shaken manually for about three minutes and the two phases allowed to separate. A fixed amount of xylene layer was then transferred to a low-potassium glass vial containing 5 cm³ of scintillator solution. The scintillator solution

consisted of 2,5-diphenyloxazole (10 g) and 1,4-bis (4-methyl-5-phenyl-2-oxazolyl) benzene (0.25 g) in xylene (1 dm³). The radioactive assay was made by a Beckman liquid scintillation counter (Model LS-100).

Protodedeuteriation rates were obtained from quantitative measurements of IR absorption corresponding to the C-H deformation in case of (4-²H)anisole and C-D deformation in case of (4-²H)phenol. The experimental details for the protodedeuteriation of the two substrates are given in Table 2. The substrate was dissolved in the acidic solution by rapid stirring. After filtration, these solutions were equilibrated at 25°. At suitable time intervals, aliquots of the reaction mixture were withdrawn and poured into separating funnels containing a few cm³ of organic solvent and a sufficient amount of dilute sodium hydroxide solution to quench the exchange reaction. After shaking for three minutes, the organic phase was allowed to separate and removed for infrared analysis. In each case matched AgCl-withdow cells were used to measure the absorbances.

A check on the efficiency of the extraction was made by measuring the total amount of the substrate present in the sample either by UV or through an IR absorption common to all isotopic species. Values of k_o^D (Equation 2) were derived by the usual integrated first-order rate equation by the determination of the slope of $\log [anisole]$ against time in case of (4-²H)anisole and by $\log [(4-^2H)phenol]$ against time in case of (4-²H)phenol. The results of a typical experiment with (4-²H) anisole in 7.91M HClO₄ are given in Table 3.

Table-2: Experimental conditions for protode deuteration

Experimental Conditions	(4- ² H)Anisole	(4- ² H)Phenol
Reaction scale (cm ³)	250	20
Weight of substrate per experiment (mg)	60	200
Aliquot portion size (cm ³)	15	2
Extraction solvent	2,2,4-Trimethylpentane	Chloroform
Cell path-length (mm)	3.0	0.7
Absorption maximum used in kinetics (cm ⁻¹)	694	850
Type of peak followed	Appearance of C-H	Disappearance of C-D
Independent extraction check by	UV absorbance at 36,900 cm ⁻¹	IR absorbance at 1613 cm ⁻¹

Table-3: Protode deuteration of (4-²H)Anisole in 7.91 M HClO₄

Time min.	10 ² [Anisole] M	10 ² [4- ² H]Anisole] M	Reaction (%)	10 ⁵ x k ₀ ^D s ⁻¹
0	0.50	1.45	-	-
10	0.70	1.25	14.0	24.5
25	0.95	1.00	31.0	24.6
40	1.18	0.77	47.1	26.4
60	1.38	0.57	60.6	26.0
80	1.53	0.42	71.0	24.7
100	1.65	0.30	79.3	25.0
150	1.79	0.16	89.3	24.0
900	1.95 (estimated from UV absorbance at 36,900 cm ⁻¹)			

Results and Discussion

All the kinetic experiments reported were carried out at 25° and the rates followed Equation 2, where v is the reaction rate, k_o^H is the rate constant for the exchange of H and [substrate] refers to the concentration of the isotopically substituted compounds.

$$v = k_o^H [substrate] \quad (2)$$

The exchange reaction proceeds via an $A-S_E^2$ mechanism illustrated by Scheme 1. The rate constant k_o^H , for this sequence may be related to the individual steps using equation 3 by assuming that a steady state condition prevails for the intermediate (I) in Scheme 1.

$$k_o^H = \frac{k_1^H}{1 + (k_2^H/k_2^D)} \quad (3)$$

Following Kresge and Chiang [22] equations (4) and (5) may be written to relate the rate constant of dedeuteriation (k_o^D) and detritiation (k_o^T) in terms of kinetic leaving atom isotope effect k_2^H/k_2^D .

$$k_o^D = \frac{k_1^H}{1 + (k_2^H/k_2^D)} \quad (4)$$

$$k_o^T = \frac{k_1^H}{1 + (k_2^H/k_2^D) 1.442} \quad (5)$$

(4- H)Anisole:

Hydrogen exchange reactions of (4- 2H) anisole and (4- 3H) anisole were studied in aqueous perchloric acid solution from 4.05 M to 8.40 M. Values of k_o^D for these reactions are shown

in Table 4. Also listed in Table 4 are k_o^D/k_o^T ratios and the corresponding k_2^H/k_2^D ratios calculated from Equations (4) and (5). The kinetic isotope effect appears to be constant within experimental errors. The calculated average value of k_2^H/k_2^D turns out to be 3.93 ± 0.85 . In Fig. 1 the logarithms of k_o^D and k_o^T , are plotted against $-[H_o]$ for perchloric acid [23]. It is evident that both plots are reasonably linear with the same slope, 1.12 ± 0.02 .

In Table 5 are reported the first-order rate coefficients for the protodetritiation of (4- 3H)anisole in aqueous sulphuric acid. In this Table the values measured earlier by Satchell [9] have been used for comparison after correction for more recent H_o data [24]. In Fig. 2 are plotted $\log k_o^T$ and $\log k_o^D$ against $-[H_o]$ for sulphuric acid. Both plots turned out to be linear and parallel with the slope of 1.20 ± 0.02 . Since both k_o^D and k_o^T depend similarly upon acidity it implies that the k_o^D/k_o^T ratio remains constant over the acidity range studied. This ratio is 2.12 ± 0.15 . The kinetic isotope effect, k_2^H/k_2^D , calculated from k_2^D/k_o^T turns out to be 6.50 ± 0.65 for the hydrogen exchange reactions of (4- H)anisole in sulphuric acid.

(4- H)Phenol:

The rates of protodedeuteration and protodetritiation were also measured at 25° in aqueous perchloric acid

Table-4: Hydrogen Exchange of (4-^{*}H)Anisole in aqueous perchloric acid

HClO_4 M	$-\text{[H}_0]$ s^{-1}	$10 \times k_0^D$ s^{-1}	$10^6 \times k_0^T$ (± 0.20)	k_0^D/k_0^T (± 0.85)	k_2^H/k_2^D
4.05	1.81	0.457	0.281	1.63	3.78
4.41	1.85	0.616	0.387	1.59	3.60
4.50	2.03	0.830	0.503	1.65	3.88
5.50	2.58	3.71	2.28	1.63	3.78
5.97	2.87	4.62	1.63	1.63	3.78
7.13	3.61	62.0	35.2	1.76	4.44
7.91	4.21	242	143	1.69	4.08
8.40	4.69	618	375	1.64	3.85

Table-5: Protodeteritiation of (4-³H)Anisole in aqueous sulfuric acid

H_2SO_4 M	$-\text{[H}_0]$	$10 \times k_0^T$ s^{-1}
3.46	1.60	1.5
5.09	2.32	13.9
5.33	2.41	18.3
6.08	2.80	57.5
6.72	3.15	125
7.35	3.51	292
7.88	3.91	578

ranging from 5.08M to 8.88M in concentration. In Table 6 are listed the first-order rate coefficients k_0^D/k_0^T for these reactions. Calculated k_2^H/k_2^D ratio are also shown in Table 6. The kinetic isotope effect in this case, too, appears to be constant within experimental error. An average value of k_2^H/k_2^D is 4.20 ± 0.85 . Both $\log k_2^D$ and k_0^T are plotted against $-\text{[H}_0]$ for perchloric acid [23] in Fig. 3. Again both the plots are linear and parallel to each other with a slope of 0.92 ± 0.02 .

The results described in the previous section and summarized in Table 7 show that k_0^H varies linearly with $-\text{[H}_0]$ for the exchange reactions of (4-^{*}H)

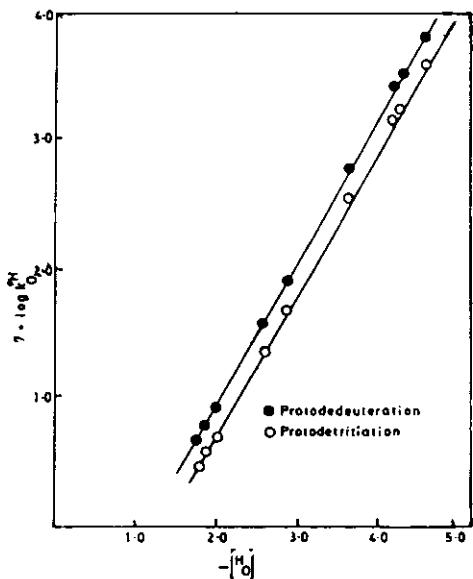


Fig.1: Dependence of exchange rate of $(4\text{-}^2\text{H})$ anisole on acidity of HClO_4

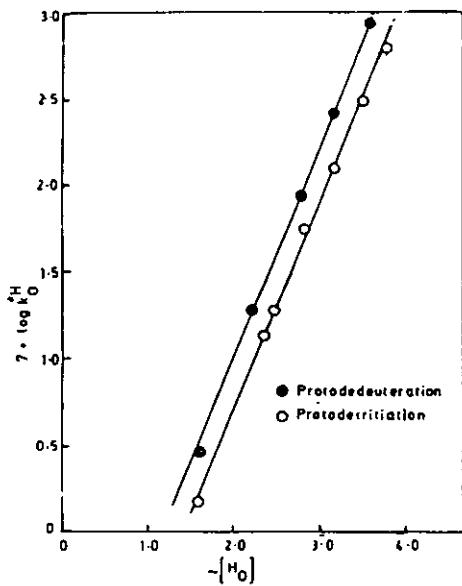


Fig.2: Dependence of exchange rate of $(4\text{-}^2\text{H})$ anisole on acidity of H_2SO_4

anisole and $(4\text{-}^2\text{H})$ phenol in concentrated aqueous acid. Such a dependence has earlier been observed [25, 26] for hydrogen exchange reactions of aromatic compounds and is considered

to be consistent with general acid catalysis by an $\text{A}-\text{S}_E^2$ mechanism (Scheme 1). The values of the slopes appear to be in agreement with the earlier finding that these slopes are generally higher for exchange reactions in sulphuric acid than those in perchloric acid, for example, using Hammett's [27] $-\text{[H}_o]$ values, Satchell [25] reported a slope of 1.18 for the exchange reaction of both $(4\text{-}^2\text{H})$ anisole and $(2\text{-}^2\text{H})$ anisole in sulphuric acid as against 0.98 for $(3\text{-}^2\text{H})$ anisole in the exchange reaction in perchloric acid. Similarly a slope of 1.12 was reported [25] for the exchange reaction of (^2H) benzene in perchloric acid as compared to the previously reported [3b] value of 1.36 for the same reaction in sulphuric acid. Since the slopes of $\log k_o \cdot H$ against $-\text{[H}_o]$ are consistent with an $\text{A}-\text{S}_E^2$ mechanism for isotopic hydrogen exchange, it is of interest to see how far the small differences in these slope can be interpreted mechanistically. The data in Table 7 show that the slopes for the exchange reactions of phenol are lower than those for the exchange reactions of anisole. This implies that a lower slope is obtained for a less reactive compound. This may not be generalized due to the small range of substrates studied. However, a comparison of the values of these slope with those reported in the literature [3a, 25] reveals that lower slopes are usually found for phenol substrates, since equilibrium protonation of phenols usually shows a lower acidity dependence than that of aromatic ethers. It may be pointed out that the protonation of 1,3,5-trimethoxybenzene does not follow [6b] the H_o function; instead it follows a different acidity function H_R [28]. We have no reason to dis-

Table-6: Hydrogen-exchange of (4-^{*}H)Phenol in aqueous perchloric acid

HClO_4 M	$-\text{[H}_0]$	$10^5 \times k_o^D$ s^{-1}	$10^5 \times k_o^T$ s^{-1}	k_o^D/k_o^T (± 0.20)	k_2^H/k_2^D (± 0.85)
5.08	2.33	0.583	0.352	1.65	3.85
6.17	2.98	1.88	1.14	1.65	3.85
7.04	3.51	7.73	4.12	1.87	5.05
8.00	4.28	29.4	19.5	1.51	3.20
8.88	5.04	166	91.2	1.82	4.78

Table-7: Correlation of exchange rates with Hammett's acidity function

Aromatic substrate	Catalyzing acid	Acidity range $-\text{[H}_0]$	slope
(4- ³ H)Anisole	HClO_4	1.81-4.61	1.12
(4- ² H) Anisole	HClO_4	1.18-4.61	1.12
(4- ³ H)Anisole	H_2SO_4	1.60-3.81	1.20
(4- ² H)Anisole	H_2SO_4	1.63-3.65	1.20*
(4- ³ H)Phenol	HClO_4	2.33-5.04	0.92
(4- ² H)Phenol	HClO_4	2.33-5.04	0.92

* A value of 1.81 was reported using a different set of $-\text{[H}_0]$ values [25].

regard that the protonation of anisole also follows the latter which would imply a linear plot of $\log k_o^H$ against $-\text{[H}_0]$ of slope higher than unity. It appears as if solvation of the phenolic hydrogen is responsible for the lower acidity dependence exchange of phenols. The marked differences in the slopes of $\log k_o^H$ against $-\text{[H}_0]$ plots of different aromatic substrates

are consistent with a single mechanism but different acidity dependencies for the protonation of these substrates.

Kinetic hydrogen isotope effects:

The average kinetic hydrogen isotope effects, k_2^H/k_2^D for the exchange reactions of the two substrates along with the acidity ranges of the catalyzing acids are tabulated in Table 8. Although these values differ from each

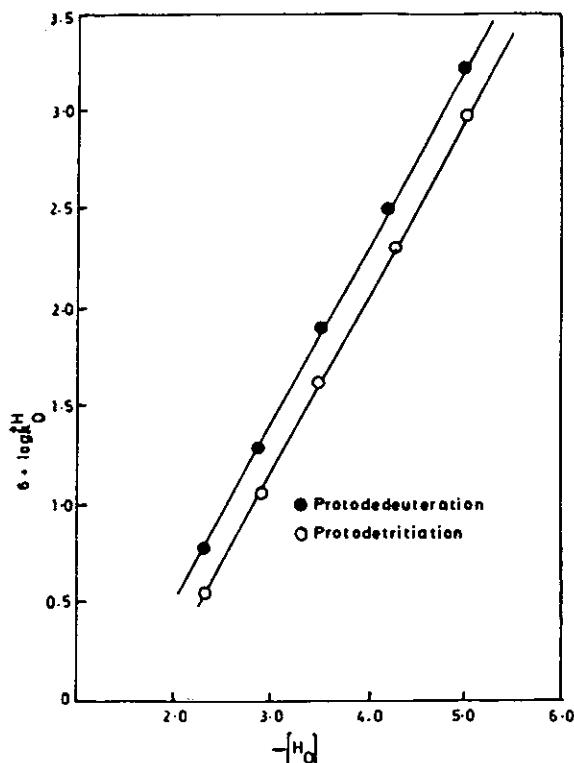


Fig. 3: Dependence of exchange rate of (4- H^*)phenol on acidity of $HClO_4$.

other to a considerable extent yet for given substrate-catalyst series, the k_2^H/k_2^D ratios appears to be fairly constant over the acidity range in which these reactions were studied. It may be pointed out that these ratios are a combination of both the primary and secondary isotope effects. For the following discussion, relative rather than absolute, primary isotope effects

are important since it is improbable that any secondary effects arising as a result of change of hybridization (from the intermediate to the product) at the 4-position will be dependent upon the hydroxyl or the methoxy group in the two substrates.

The average k_2^H/k_2^D ratios for the exchange reactions of (4- H^*)phenol and (4- H^*)anisole in aqueous perchloric acid are 4.18 ± 1.00 and 3.93 ± 0.85 respectively. However the ratio turns out to be 6.50 ± 0.65 for the exchange reactions of (4- H^*)anisole in aqueous sulfuric acid. The higher magnitude of the ratio for the latter reaction may be attributed to the difference in the nature of the bases present in aqueous sulphuric acid and in aqueous perchloric acid media; in aqueous perchloric acid the only effective base species is the H_2O molecule whereas in aqueous sulphuric acid, in the concentrations of the present investigation appreciable quantities of HSO_4^- are also present. In this way it is also possible to account for the faster rates of hydrogen exchange observed for the reactions in aqueous sulphuric acid relative to aqueous perchloric acid.

The observation of relatively constant hydrogen isotope effect of these exchange reactions is in line with the suggestion of Challis and

Table-8 Kinetic Hydrogen Isotope Effects

Substrate	Catalyzing acid	$-\left[H_0\right]$ range	k_2^H/k_2^D
(4- H^*)Phenol	$HClO_4$	2.33-5.04	4.18 ± 1.00
(4- H^*)Anisole	$HClO_4$	1.81-4.61	3.93 ± 0.85
(4- H^*)Anisole	H_2SO_4	1.60-3.81	6.50 ± 0.65

Millar [29] to regard this kind of behaviour as normal for all proton transfer reactions. However, since there is enough reason to believe that the primary isotope effects depend upon pK even in aromatic substitution reactions [30] as implication of the constancy of the k_2^H/k_2^D ratios over the wide ranges of acidity of the catalyzing acids may be deduced in terms of the base strength of water. In dilute aqueous solution a value accepted for $pK H_{30}^+ = -1.75$. However, other estimates based on acidity function data suggest [31] that $pK H_{30}^+$ is -6.66 in concentrated sulphuric acid. Clearly, if the primary isotope effects are to depend upon ΔpK of the substrate and the catalyst, our results imply that the base strength of water remains almost constant over the wide acidity range studied both in sulphuric acid as well as in perchloric acid.

Acknowledgement

The author is thankful to Dr. B.C. Challis for his help and suggestions during this work.

References

1. C.K. Ingold, C.G. Raisin and C.L. Wilson, *Nature*, **134**, 847 (1934).
2. C.K. Ingold, C.G. Raisin and C.L. Wilson, *J. Chem. Soc.*, 915 (1936).
3. V. Gold and D.P.N. Satchell, *J. Chem. Soc.*, (a) 3609 (1955), (b) 3619 (1955), (c) 3622 (1955).
4. V. Gold and D.P.N. Satchell, *J. Chem. Soc.*, 1635 (1956).
5. a) G. Archer and R.P. Bell, *J. Chem. Soc.*, 3228 (1959);
(b) J.F. Bunnett, *J. Am. Chem. Soc.*, **82**, 499 (1960).
6. a) A.J. Kresge and Y. Chiang, *J. Am. Chem. Soc.*, **81**, 5509 (1959);
b) A.J. Kresge and Y. Chiang, *Proc. Chem. Soc.*, **81**, (1961)
7. c) A.J. Kresge and Y. Chiang, *J. Am. Chem. Soc.*, **83**, 2877 (1961).
V. Gold, *Proc. Chem. Soc.*, 453 (1961).
8. A.J. Kresge, L.E. Hakka, S. Mylonakis and Y. Sato, *Discuss. Faraday Soc.*, **39**, 75 (1965).
9. F.H. Westheimer, *Chem. Rev.*, **61**, 265 (1961).
10. Bigeleisen, *Pure Appl. Chem.*, **8**, 217 (1964).
11. R.P. Bell, *Trans. Faraday Soc.*, **39**, 16 (1965).
12. L. Melander, 'Isotope Effects on Reaction Rates' Roland Press, New York (1960).
13. A.V. Willi and M. Wolfsberg, *Chem. & Ind.*, 2097 (1964).
14. a) R.F. Bader, *Canad. J. Chem.*, **42**, 1822 (1964);
b) F.G. Bordwell and W.J. Boyle, *J. Am. Chem. Soc.*, **93**, 512 (1971).
15. R.A. More O Ferall and J. Kouba, *J. Chem. Soc. B*, 985 (1967).
16. W.J. Albery, *Trans. Faraday Soc.*, **63**, 200 (1967).
17. A.J. Kresge, *Discuss. Faraday Soc.*, **39**, 49 (1965).
18. F.A. Long and L.C. Gruen, *J. Am. Chem. Soc.*, **89**, 1287 (1962).
19. A.I. Vogel, "Practical Organic Chemistry", 3rd ed, Longmans, London (1967), p. 673.
20. H. Gilman and C.E. Arntzen, *J. Am. Chem. Soc.*, **69**, 1537 (1947).
21. J.R.A. Pollock and R. Stevens (Editors) "Dictionary of Organic Compounds" 4th ed, Eyre and Spottiswoode Publishers, London (1965), p. 2660.

22. A.J. Kresge and Y. Chiang, *J. Am. Chem. Soc.*, **84**, 3976 (1962).
23. K. Yates and H. Wai, *J. Am. Chem. Soc.*, **86**, 5400 (1964).
24. M.J. Jorgenson and D.R. Hartter *J. Am. Chem. Soc.*, **85**, 878 (1963).
25. D.P.N. Satchell, *J. Chem. Soc.*, 3911 (1956).
26. a) V. Gold and D.P.N. Satchell, *Nature*, **176**, 602 (1955);
b) D.P.N. Satchell, *J. Chem. Soc.*, 463, (1959);
c) C. Eaborn and R. Taylor, *J. Chem. Soc.*, 3310 (1960);
d) F.A. Long and J. Schulze, *J. Chem. Soc.*, 83, 3340 (1961).
27. L.P. Hammett and A.J. Dyrup, *J. Am. Chem. Soc.*, **34**, 2721 (1932).
28. N.C. Deno, P.T. Groove and G. Saines, *J. Am. Chem. Soc.*, **81**, 5790 (1959).
29. B.C. Challis and E.M. Millar, *J. Chem. Soc., Perkin II*, 1623 (1972).
30. S.B. Hanna, C. Jermini and H. Zollinger, *Tetrahedron Lett.*, 4415 (1965).
31. N.C. Deno and R.W. Taft, Jr., *J. Am. Chem. Soc.*, **76**, 244 (1954).