Reaction of 3-Benzylidenephthalide with Diamines and p-Aminophenylcarboxylic Acids & Antimicrobial Activities of the Products

A.H.BEDAIR*, R.Q.LAMPHON AND S.A.GHAZAL**

Department of Natural Sciences, Faculty of Education, King Abdul-Aziz University Medinah Munawwarah, Saudi Arabia.

Botany Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt.

(Received 9th October, 1986, Revised 17th January, 1988)

Summary: Bis-(2-methylene-3-benzalphthalimidine) II, desoxybenzoin-o-(4'-aminophenyl) carboxamide III and 2-(substitutedphenyl)-3-benzalphthalimidines of type IV and V were obtained via interaction of corresponding diamines with 3-benzylidenephthalide I. Condensation of ${}^{\rm C}_{6}{}^{\rm H}_{4}$ (NH $_2$) $_2$ -1,2 with I gave fused benzimidazoisoindol derivative VII as anomalous product.

Benzalphthalimidines with p-carboxylate of type VIIIa-c are also prepared. Their IR, PMR and Mass spectra were also studied, III and VIIIb were found to exhibit activity against Gram-positive, Gram-negative, yeast and filamentous fungi.

Although many reactions of investigated [2-8], but reactions of I 3-benzylidenephthalide I [1] with with ethylenediamine, phenylenediseveral nucleophilic reagents have been amines and \underline{p} -aminophenylcarboxylic

^{*}Present Address: Chemistry Dept. Faculty of Science Al-Azhar University, Nasr-City, Cairo, Egypt.

acids have not been studied. In the present investigation, action of these reagents on I have been studied and their antimicrobial activities [9] were also discussed.

Condensation of I with ethylenediamine under mild conditions furnished only one product II. Elemental analysis of this product showed a value compatible with molecular formula $C_{32}H_{24}O_2N_2$ which indicates that one mole of ethylenediamine reacted with two moles of I. The IR spectrum of this product showed vC=0 as a broad band at 1670 cm $^{-1}$ and $\nu C-H$ aliphatic at (2920 - 2840 cm $^{-1}$) respectively. The mass spectrum showed a molecular ion peak at m/z 468 (M⁺) together with a base peak at m/z 248 and other peaks at m/z 395, 394, 377, 288, 232 and 221. The above findings led to the formulation of this product as Bis-(2-methylene-3-benzalphthalimidine) II. However, condensation of I with p-phenylenediamine in glacial acetic acid containing fused sodium acetate furnished two products. Elemental analysis of these products showed values compatible with molecular formulae $C_{21}H_{18}N_2O_2$ $C_{23}H_{18}N_2O_2$.

The IR spectrum of one of the products $(C_{21}^H_{18}^N_2^O_2)$ showed absorption bands at 3425 (yNH $_2$), 3337 (,NHCO) and at 1675 cm $^{-1}$ (vC=O). The mass spectrum showed a molecular ion peak at m/z 330 (M $^+$) together with a base peak at m/z 312.

The above findings led to the formulation of this product as desoxybenzoin-o-(4'-aminophenyl) carbox-amide III.

The second product $C_{23}H_{18}N_2O_2$ was assigned the structure 2-(p-aceta-minophenyl)-3-benzalphthalimidine IV

on the basis of spectral data. Its IR spectrum showed absorption bands at 3330 (ν NH) and at 1690 cm $^{-1}$ (ν C=0). The PMR spectrum of this compound exhibited signals at δ 2.1 (3H, s, COCH $_3$), 6.48 [1H, s, (-C=CH-)] and 7.1 - 8.3 [14H, m, Ar - H & NH] ppm. The mass spectrum showed a molecular ion peak at m/z 354 (M $^+$) (100 %) as a base peak together with other peaks at 312, 311, 296, 295, 277, 235, 192, 150, 108, 106 and 91.

It is clear that 3-benzylidene-phthalide I must have opened with \underline{p} -phenylenediamine to give III which underwent cyclization with subsequent acetylation of the free amino group to phthalimidine compound IV.

Interaction of I with o-nitro-pphenylenediamine furnished corresponding 2-(o-nitro-p-aminophenyl) 3-benzalphthalimidine V. The structure was supported by analysis, IR spectrum showed νCO at 1710 as strong absorption band, vNH at 3340, 3490 and vNO_{2} at 1375 and 1520 cm⁻¹. The PMR spectrum of this compound showed five sets of signals at δ 6.28 [2H, s, NH₂ (exchanged with D₂O)], 6.33 [1H, d, Hd (which showed long range spin coupling with H*)(JHdH*= 2.68Hz)] [10], 6.93 (1H, d, Hb; JHbc = 8.57Hz), 8.12 [2H, confused signal, (Ha & H)] and at 7.20 - 7.82 (9H. Ar-H) ppm. The proton Hc appeared as a doublet at $\delta = 7.85$ ppm, after shaking with ${ t D}_2^{}{ t O}$. The mass spectrum shows molecular ion peak at m/z 357 (100%) as base peak together with other peaks at 339, 323, 309, 294, 214, 77, 75 and 73.

On the contrary the interaction of I with o-phenylenediamine in glacial acetic acid in the presence of fused sodium acetate furnished one product only. Elemental analysis and both its

Table-1: Characterization Data of Various Compounds prepared

Compds	M.P.	Formula	Analysis				
	•c		Fou	Found /			
			C%	H%	N%		
II	240-242	$^{\mathrm{C}}_{32}^{\mathrm{H}}_{24}^{\mathrm{N}}_{2}^{\mathrm{O}}_{2}^{\mathrm{O}}$	82.00	5.20	5.88		
		32 24 2 2	82.05	5.13	5.98		
111	220	$^{\text{C}}_{21}^{\text{H}}_{18}^{\text{N}}_{2}^{\text{O}}_{2}^{\text{O}}_{2}$	76.12	5.32	8.54		
		21 18 2 2	76.36	5.45	8.48		
IV	260-262	C23H18N2O2	77.99	5.10	7.90		
	(dec.)	23 18 2 2	77.97	5.08	7.91		
٧	192-194	C21H15N3O3	70.46	4.32	11.76		
		21 15 3 3	70.59	4.20	11.76		
VII	158-160	C21H16N2O	80.49	5.90	8.88		
		21 16 2	80.77	5.13	8.97		
VIIIa	96-98	C24H19NO3	78.10	5.38	3.80		
		24 19 3	78.05	5.15	3.79		
VIIIb	204-206	C ₂₃ H ₁₇ NO ₃	77.55	4.99	3.86		
		23 17 3	77.75	4.79	3.94		
VIIIc	230	C24H18N2O4	72.50	4.40	7.10		
		24 18 2 4	72.36	4.52	7.04		

⁻ compound VIIIa crystallised from petroleum ether (60-80°).

IR and PMR spectra confirmed that this product may be assigned structure 6-(benzal)benzimidazo[2,3-c] isoindo-10a - ol VII rather that the expected structure VI which could not be The IR spectrum of VII isolated. the disappearance of vC=0, shows PMR spectrum showed absorption signals at δ 4.55 and 7.2 - 8.2 in the intensity ratio 1:15. The first signal at &4.55 [1H, broad signal (exchangeable with D₉0), OH] and the second signal at $\delta 7.2 - 8.2$ [15H, m, (Ar - H, -C = CH -, NH)] ppm.

The formation of product VII was rationalized through the following sequence:

Scheme-1

In a similar fashion, condensation of I with ethyl p-aminobenzoate, p-aminophenylacetic acid and with p-aminohippuric acid was successful and the corresponding benzylidenephthalimidines VIIIa-c with p-carboxylate group were obtained.

The assignment of structure VIII was based on analysis, IR measurements which showed ν C=O at 1710, 1760 cm⁻¹, ν C-H (aliphatic) at (2930

⁻ compounds VIIIb,c crystallised from ethanol.

(b) (a) $V III a ; R = COOCH_2CH_3$ $b ; R = CH_2COOH$ $c ; R = -C - N - CH_2 - COOH = C = N - CH_2 - COOH$ (B)

- 2850 cm^{-1}) (compound VIIIa); vC=0at 1680 \mbox{cm}^{-1} and $\nu\mbox{COOH}$ at (3300 -2750 cm⁻¹) (compound VIIIb); ν C=0 at (1740 - 1690 cm⁻¹), vCOOH at (3380 -2780 cm^{-1}) and NH at 3410 cm⁻¹ (compound VIIIc). PMR spectrum of compound VIIIa showed four signals in the intensity ratio 3:2:1:13 at $:\delta$ 1.37 [3H, t, CH_3 , J = 6Hz], 4.33 $[2H, q, CH_{2}, J = 6Hz], 6.35$ [1H, s, -CH=C] and at δ 7.25 - 8.00 (13H, m, Ar-H) ppm. Whereas PMR spectrum of compound VIIIc (DMSO) showed four signals at δ 3.95 [2H, d, CH_2 ; $J_{gem} = 8Hz$], 5.95 (1H, br, OH), 8.75 (1H, s, NH) (these two signals were exchanged by D₂O) and at 7.4 - 8 [14H, m, Ar-H and -CH = C-(c)] ppm; it is clear that compound VIIIc was present in tautomeric forms A and B. The intensity of the upperfield singlet at δ 5.95 is much greater than that of the downfield singlet at δ 8.75 which indicates that the tautomeric form B is the most predominant one.

The mass spectrum of compound VIIIc give rise to the molecular ion peak at m/z 398 (M⁺) together with base peak at 250 and other peaks at 380, 352, 324, 306, 280, 267, 222, 204, 194, 104, 76.

Antimicrobial Activity:

Antimicrobial testing of the above mentioned compounds was carried out and it was found (Table-2) that VIIIb showed activity compound against a number of Gram-positive bacteria; Micrococcus luteus (maximum activity) $\overline{(++++)}$ with $\overline{MIC} = 7.5 \,\mu\text{g/ml}$, Bacillus subtilis (moderate activity) $\frac{\text{Hacillus}}{\text{Hermitian}} = 10 \mu \text{g/ml}$, Bacillus cereus (slight activity) (++) with MIC = 12.5 µg/ml and against Gram-negative bacteria, Escherichia coli (slight activity (++) with MIC = $12.5 \mu g/ml$. Also MIC 12.5 µg/ml against unicellular yeast, Candida utilis and filamentous fungi, Trichophyton sp. while other compounds were inactive. is obvious that the presence of free functional group (-CH2COOH) at the 4'-position of 2-phenylphthalimidine part (compound VIIIb) causes pronounced effect on the antimicrobial activity.

Experimental

The melting points are uncorrected, the IR spectra (Nujol) were measured on Perkin Elmer spectrophotometer, PMR spectra (CDCl₃) were measured on Varian PM 390 90MHz NMR spectrophotometer and Mass spectra on Micromass 168 V.G. Micromass Ltd. Analytical data were determined in the microanalaytical unit, Leicester University, U.K.

Bis(2-methylene-3-benzalphthalimi-dine) II (Table 1):

A solution of I (4.44g; 0.02 mol) in abs. ethanol (20ml) was treated with ethylenediamine (0.02 mol) dropwise with occasional shaking. The reaction mixture was left aside up to 30°C overnight, the solid obtained was filtered off and recrystallised from ethanol to give II as colourless crystals (yield 26%).

Table-2: Antimicrobial Activity	
$(++++ = maximum activity, MIC^{*} 7.50; +++ = moderate activity, MIC 10;$:
++ = slight activity, MIC 12.5 and - = inactive).	•

Type of Organisms		II	III	ΙV	v	IIV	VIIIa	VIIIb	VIIIc
Gram- positive	Micrococcus luteus	-	-	-	-	-	-	++++	-
	Bacillus subtilis	-	-	-	-	-	-	+++	-
	Bacillus cereus	•	-	-	-	-	-	++	-
Gram- negative	Escherichia coli		-	-	•	-	-	++	-
Yeast	Candida utilis	-	++	_	-	_	-	++	-
Fungi	Trichophyton sp.	-	++	-	-	-	-	++	_

^{*} Minimal inhibitory concentration (MIC in µg/ml).

Condensation of I with phenylenediamines: General Procedure:

A mixture of I (0.05 mol) and phenylenediamine compound (0.05 mol) in glacial acetic acid (30ml) containing (0.2g) freshly fused sodium acetate were heated under reflux for 6 hour, cooled and decomposed with dil. HCl.

- a. In the case of p-phenylenediamine, the product obtained was treated with ethanol in which the yellow solid dissolved yielding III (28%). The insoluble residue on crystallisation from xylene gave IV (26%) as light brown crystals (Table 1).
- b. In the case of o-nitro-p-phenylenediamine, the product was filtered and recrystallised from ethanol to give V as golden yellow needles (yield 52%) (Table 1).
- c. In the case of o-phenylenediamine, the product was filtered and recrystallised from dil. ethanol to give VII as yellow needles (yield 40%) (Table 1).

Benzylidenephthalimidine-p-carboxy-late (VIIIa-c) (Table 1):

The method was proceeded as above in the case of III, IV, V and VII.

Biological Screening (Table 2):

The compounds were tested against different types of Grampositive bacteria (Micrococcus luteus, Bacillus subtilis, Bacillus cereus), Gram-negative bacteria (Escherichia coli), unicellular yeast (Candida utilis) and filamentous fungi (Trichophyton sp.) using the hole plate and filter paper disc method [11-13].

A quantitative assays were done on active compounds only.

References

- S. Gabriel, Chem. Ber., 18, 3470 (1885).
- F. Gajewski,
 Ann., 302, 290 (1912).
- 3. F. Ephraim, Chem. Ber., 26, 1376 (1893).

- 4. A. Eibner, Chem. Ber., 39, 2203 (1906).
- 5. O. Bromberg, Chem. Ber., 29, 1434 (1896).
- 6. I.B. Hannout, E.A. Hassan, A.M. Islam and I.M. Ismail, *U.A.E. J. Chem.*, 13, 199 (1970).
- 7. A.M. Islam, I.B. Hannout, A.A. El-Maghraby and N.M. Taha, Ind. J. Chem., 14B, 507 (1976).
- 8. A.M. Islam, I.B. Hannout, N.M. Taha and A.A. El-Maghraby, Ind. J. Chem., 15B, 58 (1977).
 - . Laboratori Baldacci S.P.A. Jpn. Kokai Tokkyo Koho JP 59 46, 268

- 84 46, 268 (Cl.Co. 7D 209/46), 15 Mar 1984, Appl. 82/22, 759, 06 Aug. (1982), 10pp, C.A. 101 (1984) 54922z.
- 10. R.J. Abraham and P. Loftus,
 Proton and Carbon-13 NMR
 Spectroscopy An Integrated
 Approach, Heyden & Son Ltd.,
 London, 48, (1978).
- 11. I.G. Vincent and H.W. Vincent, Pract. Exptl. Biol., 55, 162 (1944).
- 12. G.W. Irving, J. Bacteriol., 52, 10 (1964).
- 13. H.J. Carbson, J. Bacteriol., 55, 10 (1948).