PHOTOCHEMICAL SYNTHESIS OF 4β- 19-METHYL-IMINO-5-α -CHOLESTANE

A. MATIN FARID*, J. McKENNA, J. M. McKENNA

Chemistry Department, The University, Sheffield, S3 7HF, England

(Received 24th April 1979)

Summary: Photochemical transformation are outlined with novel stereochemical or other mechanistic features leading to the synthesis of 4β -19-methyl-imino-5- α -cholestane.

Previously the photochemical cyclisation 1 of the chloramine (1) to 6β , 19-methyl-imino- 5α -cholestane (1A) has been reported. We now report the photochemical cyclisation of a strongly sterically hindered chloramine (2), containing the juxtaposition of groups necessary to functionalise the angular non-activated $C_{(19)}$ methyl group by Hoffmann 2 and Loffler 3 reaction to another bridged novel heterocyclic system formulated as 4B, 19-methyl-imino- 5α -cholestane (2A). It should be pointed out that the use of the strongly sterically hindered chloro amines (1&2) for the synthesis of the novel heterocyclic steroidal bases (1A & 2A) have previously been inhibited 4,5 interalia by the instability of 6β and 4β chloromethyl amine (1 & 2) arising from syn-axial

compression on the nitrogeneous group by the angular 10-methyl group.

The highly unstable base i.e. $5 \, \alpha$ -cholestan- $4 \, \beta$ -yl chloromethylamine (2) prepared by treatment of $5 \, \alpha$ -cholestan-4 β -ylmethylamine in cyclohexane with hypochlorous acid was stabilized by freeze-drying and subsequently transferred to a quartz tube with freshly distilled trifluoroacetic acid and photolysed at 5° C using a low pressure 450 watt Hanovia lamp in an atmosphere of nitrogen for 8 minutes to afford the base (2A), yield 20%. The mass spectrum showed molecular ion at m/e 399, which was more intense and a metastable peak at 318 was observed which corresponds to $\frac{(356)^2}{(399)} = 317.6$ and can be derived as $(3 \, to \, 5)$.

$$H_{3}C - N - CH_{2}$$

$$H_{3}C - N \Rightarrow CH_{2}$$

$$+$$

$$(3) \qquad m/e 399$$

$$(4)$$

$$(5) \qquad m/e 356.$$

The methiodide of the base (2A) has m.p. $166\cdot167^{\circ}$; [α] $_{\rm D}$ + 17° ; n.m.r. (spectra in CDCl $_{3}$), τ 5.65 (1H, broad singlet, 4 α -proton); 6.16 (3H, singlet, N-Me); 6.3 (5H, singlet, N-Me and 19-CH $_{2}$ superimposed). Found: C, 64.1; H, 9.6; N, 2.9; I, 23.6%; C $_{29}$ H $_{52}$ NI requires C, 64.3; H, 9.6; N, 2.6; I, 23.5%; mass spectrum m/e 413, (parent peak), metastable peak appeared at 318. In the methiodide of 6 β , 19-imino-5- α -cholestane (1A), the molecular ion appeared m/e 413, but no metastable peak was observed.

Acknowledgements

The authors express their thanks to Smith, Kline and French, (Philadelphia, U.S.A.) for a part of the financial support.

References

- 1. A.M. Farid, J.McKenna, J.M. McKenna and E.N. Wall, Chem. Comm., 1222 (1969).
- 2. A.W. Hoffmann, Ber, 18, 5, 109 (1885).
- 3. K. Loffler, Ber, 43, 2033 (1910).
- 4. R. Ledger and J. McKenna, Chem. and Ind, 1662 (1963).
- 5. For a review see Wolff, M.E., Chem. Rev., 63, 55 (1963).