Synthesis of High-Activity TiO₂/WO₃ Photocatalyst via Environmentally Friendly and Microwave Assisted Hydrothermal Process

GUANGJUAN REN, YUAN GAO*, JUNGANG YIN, AN XING AND HUITAO LIU College of Chemistry and Biology, Yantai University, Yantai 264005, P. R. China.

(Received on 19th July 2010, accepted in revised form 21st February 2011)

Summary: This work focused on the synthesis of high-activity TiO_2/WO_3 photocatalysts through an environmentally friendly and novel process. A high energy-efficient microwave assisted hydrothermal method was employed to prepare TiO_2/WO_3 from $TiCl_4$ and Na_2WO_4 without using any organic species. The properties of the synthesized catalysts were characterized by XRD, TEM and BET. The size of the obtained TiO_2/WO_3 photocatalyst was about 10 nm with high specific surface areas larger than 150 m²/g. Compared with pure TiO_2 , the TiO_2/WO_3 nanoparticles exhibited better photocatalytic activity for the degradation of Rhodamine B under visible light irradiation.

Introduction

Among the various oxide semiconductor photocatalysts, research has mainly focused on titanium dioxide (TiO₂) as photocatalyst in diverse areas ranging from water and air treatment to self-cleaning surfaces because of its high photoreactivity, biological and chemical inertness, cost effectiveness, non-toxicity, and long-term stability against photocorrosion and chemical corrosion [1]. Such photocatalyst, as we know, has some shortcomings. Firstly, TiO₂ is a high-energy band material that can only be excited by high energy UV irradiation. This practically rules out the use of sunlight as an energy source for the photoreaction. Secondly, a low rate of electron transfer to oxygen and a high rate of recombination between excited electron/hole pairs result in a low quantum yield rate and also a limited photooxidation rate [2]

In order to improve photocatalytic activity of TiO_2 for wide range applications, it can be achieved via coating with Ag, Au, Pt, Pd and other transition metals or doping with a lot of nonmetal elements [3-5]. Coupling TiO₂ with other semiconductors is an approach that has received much attention for improving the photocatalytic properties of TiO₂, including TiO₂/CdS. TiO_2/SnO_2 , TiO₂/ZnO, TiO₂/SiO₂ and TiO₂/WO₃. Among these, WO₃ coupling has been widely studied to improve the photocatalytic performances of TiO₂, since WO₃ can be served as an electron accepting species [6-8]. As a basic function, WO₃ has a suitable conduction band potentially to allow the transfer of photo-generated electrons from TiO₂ facilitating effective charge separation. Additionally, formation of a monolayer of WO_x species on TiO_2 can significantly increase the surface acidity as WO₃ is 15 times more acidic than TiO₂ [9]. Because of this increased acidity, TiO₂/WO₃ can absorb more hydroxyl groups and simultaneously more organic reactants on its surface. Thus,

^{*}To whom all correspondence should be addressed.

significant improvement of the photocatalytic activity has been achieved in comparison with the pure TiO_2 photocatalysts. To date, TiO_2/WO_3 has been prepared by sol-gel, impregnation, microemulsion, hydrothermal and mechanical methods [10-13].

Common Ti sources used in hydrothermal synthesis usually include titanium tetrachloride, titanium isopropoxide and titanium butoxide, etc [14, 15]. Ti(OPr)₄ and Ti(OBu)₄ are very stable, but the cost is much move and organic solvents are usually used during the synthesis, which would make it difficult for industry use, due to the necessity of waste water treatment.

In this study, TiCl₄ was applied as precursor substance. In comparison with above organic Ti sources, it would be much cheaper and it is a commercially available raw material. Na₂WO₄ was employed as W source. The TiO₂/WO₃ nanoparticles were synthesized through a novel microwave assisted hydrothermal process without using any organic species. Under visible light irradiation, photocatalytic experiments indicated that this composite catalyst shows far superior activity to pure TiO₂ in the degradation of Rhodamine B (RhB).

Results and Discussion

XRD was used to investigate the changes of phase structure of TiO_2 samples prepared with different amounts of sodium tungstate addition (Fig. 1). It can be seen that the structure of pure TiO_2 powder is mainly rutile crystal (JCPDS card No. 21-1276). But the diffraction peaks of all TiO_2/WO_3 powders are ascribed to the anatase phase (JCPDS card No. 21-1272). As doping quantity increased, the characteristic peaks were broadened. Using Scherrer equation, the particle sizes of TiO_2/WO_3 powder are

about 10.8, 10.2, 9.2 and 6.8 nm corresponding to 1%, 3%, 5% and 10% mol WO₃, respectively, which indicate that the average crystal sizes decrease with the increase of the added WO₃. Those results suggested that W-doped TiO₂ could not only hinder the phase transformation from anatase to rutile, but also prevent the growth of the catalyst crystallites.

Fig. 1: XRD patterns of TiO_2/WO_3 nanocomposites (A = anatase, R = rutile, T = WO₃).

However, anatase TiO₂ was obtained when sulfate or fluoride was used as a raw material [16, 17]. As we all know Cl⁻ ions are easily to be volatilized in the hydrothermal treatment, which will weaken the resistance to form high crystallinity. Moreover, its adsorption in titanium oxygen octahedron can reduce the connection strength between the crystal particles, which is favorable for the formation of rutile [18, 19]. It is worth noting that no WO₃ phase could be observed in the XRD patterns, even the doping amount reached 3 mol%. Thus we can propose that all the W⁶⁺ may be incorporated into the titania lattice and replaced Ti⁴⁺ to form W-O-Ti bonds or located at interstitial sites [20]. The WO₃ is present either in the form of highly dispersed WO₃ clusters or as an amorphous layer on TiO₂ [9]. When the tungsten concentration exceeds the minimum amount for monolayer formation, the WO₃ crystal structures will be formed (JCPDS card No. 72-0677).

Fig. 2 shows the TEM images of pure TiO_2 and 3.0 mol% W-TiO₂ photocatalysts prepared under different reaction conditions. The average particle sizes are 17, 13 and 9 nm corresponding to sample (a), (b) and (c), respectively. Obviously, doping W element into TiO_2 would prevent the growth of crystallites. Moreover, during the microwave assisted hydrothermal process, the temperature of the reaction solution is raised so rapidly that a large amount of nuclei can be generated in a very short time, which inhibited the crystal growth of the product.

Fig.2: SEM images of samples. (a) TiO₂, (b) TiO₂/WO₃ synthesized by hydrothermal method, (c) TiO₂/WO₃ synthesized by microwave assisted hydrothermal method.

Specific surface areas of undoped and W-doped TiO_2 powders are given in Table-1. The results show an increase of the W-doped TiO_2 compared with the pure TiO_2 synthesized by hydrothermal method. On the other hand, the specific

surface area of W-doped sample synthesized by microwave assisted method is larger than $150 \text{ m}^2/\text{g}$, which is about 2 times as that of the sample synthesized by hydrothermal method.

 Table-1:
 Specific surface area of photocatalysts.

Sample	W content (mol %)	Synthetic method (m ² /g)	Specific surface area
TiO ₂	0	hydrothermal	44.94
3.0% W-Ti	O ₂ 3.0	hydrothermal	79.08
3.0% W-Ti	O ₂ 3.0	microwave hydrotherma	d 153.70

In order to investigate the photocatalytic activity of W-doped TiO₂ samples, degradation experiments of RB were performed under visible light irradiation. The same amount of each sample (120 mg sample in 120 ml solution) was used for an easy comparison in our experiments. Photodegradation result of RB is presented in Fig. 3, where (a) shows the blank reaction, indicating that RB degraded about 12% after visible light irradiation for 90 min. This is because of RB's self-photosensitization. The degradation rate of 3.0 mol% W-doped TiO₂ sample synthesized by microwave assisted hydrothermal could be more than 97% under visible light irradiation. Under the same circumstance, the pure TiO₂ sample was only about 57%. In addition, the microwave assisted process could enhance the activity of the catalyst significantly. comparing with the hydrothermal condition without microwave.

Fig.3: Photocatalytic decomposition of RB under visible light illumination for 90 min. (a) blank, (b) TiO₂ and (c) TiO₂/WO₃ synthesized by hydrothermal method, (d) TiO₂ and (e) TiO₂/WO₃ synthesized by microwave assisted hydrothermal method.

The effect of photocatalytic activity of W-doped TiO_2 samples synthesized at different contents of tungsten on the rate of destruction of RB is shown in Fig. 4. Compared with Fig. 3 (a), pure WO₃ did not show any photocatalytic activity towards RB under the operating conditions used. The

nanocomposites containing 3% mol WO₃ showed up to 97% higher hotocatalytic activity compared with that of other samples. The enhancement in the rate can therefore be attributed to the improved charge separation. However, at WO₃ loadings of 10% mol or higher, the activity reduced as a result of the dilution effect of the inactive WO₃ phase [21]. When WO₃ was doped into TiO₂, the photogenerated electrons can be transferred to the lower-lying conduction band of tungsten oxide, while the holes can accumulate in the valence band of titania, and effectively scavenged by the oxidation, while the photo-generated electrons can be transferred onto the surface of tungsten oxide rather than undergoing bulk recombination [22].

Fig.4: Reaction rates of TiO₂ samples having different WO₃ contents.

Experiment

Materials Preparation

A typical synthesis process for the preparation of TiO_2/WO_3 (molar ratio 97:3) nanocomposite oxides was as follows: 5.14g Titanium tetrachloride (TiCl₄) was added into 5M HCl under vigorous stirring for 1h at room temperature. 0.27g Sodium tungstate (Na₂WO₄·2H₂O) was dissolved in distilled water, and was added dropwise into solution in the ice salt bath. And then, NH₃·H₂O was used to adjust the solution pH to 1. The solution was transferred into a Teflon tube, sealed and heated by microwave irradiation at 2×10^5 Pa for 10min, then kept at 160°C for hydrothermal treatment. After 24h, the resulting product was separated by centrifugation, and washed with distilled water for several times. Finally, it was dried at 80°C for 5h. As a comparison, the synthesis process was also carried out without microwave irradiation.

Similarly, 1.0, 5.0, 10.0mol% TiO₂/WO₃ and

pure TiO_2 samples were also prepared by repeating the above procedure. All chemicals used in this work were of analytical grade, and doubly distilled water was used for the solution preparation.

Characterization

The crystalline structure of samples was measured by an X-ray diffractometer (XRD, XRD-6000, Shimadazu) using graphite monochromatic copper radiation (Cu K α) at 40 kV, 30 mA and λ =1.5406 Å over the 2 θ range of 20-70° with a scan rate of 2° per min. The crystallite size was estimated from the X-ray patterns using the Scherrer formula. The morphology of the samples was examined using a transmission electron microscopy (TEM, JEM-1400, JEOL). Specific surface areas of the products were measured with a surface area analyzer (NOVA 3000e, Quantachrome).

Evaluation of Photoactivity

In photocatalytic experiments, an aqueous solution of Rhodamine B (RB, 120 ml, 1.25×10⁻⁵ mol dm⁻³, pH 6.91) containing 1g/L TiO₂ samples was used. The solution was stirred overnight in the dark to obtain the adsorption/desorption equilibrium among the photocatalyst, the organic substrates, the solubilized oxygen, and the atmospheric oxygen. A 250W medium mercury lamp with a 450 nm cutoff filter used as a visible light source was positioned within a cylindrical Pyrex vessel; water was circulated through the cylindrical Pyrex vessel to avoid lamp overheating. Three millilitres of aliquots were taken from the solutions irradiated for different time and separated through a centrifugal precipitator (4000 r min⁻¹) prior to analysis. Variations in the concentration of the organic substrates in each degraded solution were monitored by measuring the UV-vis absorption at 554 nm with a UV-vis spectrophotometer (TU-1901, Pgeneral).

Conclusions

In summary, a novel and environmentally friendly process for the preparation of high activity photocatalyst was presented in this study. The TiO_2/WO_3 composites with different contents of tungsten oxide were prepared by microwave assisted hydrothermal method. No organic solvents or species were employed throughout the synthesis, which greatly simplified the procedures of waste treatment, and reduced the effect of pollution on the environment. These W-doped TiO_2 nanoparticles possess good crystallinity and exhibit the highest activity for the degradation of RB organic pollutants under visible

light irradiation, making them promising candidates for environmental applications in wastewater treatment.

Acknowledgment

This study was supported by the national natural science foundation of P. R. china (51073132)

References

- 1. A. Fujishima, T.N. Rao and D.A. Tryk, *Journal* of *Photochemistry* and *Photobiology* C: *Photochemistry Reviews*, **1**, 1(2000).
- X. Z. Li, F.B. Li, C.L. Yang and W.K. Geb, Journal of Photochemistry and Photobiology A: Chemistry, 141, 209 (2001).
- 3. G. Halasi, A. Kecskeméti and F. Solymosi, *Catalysis Letters*, **135**, 16 (2010).
- 4. M. Jakob, H. Levanon and P.V. Kamat, *Nano Letters*, **3**, 353 (2003)
- 5. Y. Yu, H.H. Wu, B.L. Zhu, S.R. Wang, W.P. Huang, S.H. Wu and S.M. Zhang, *Catalysis Letters*, **121**,165 (2008)
- 6. D.N. Ke, H.J. Liu, T.Y. Peng, X. Liu and K. Dai, Materials Letters, **62**, 447 (2008)
- 7. K.K. Akurati, A. Vital, J.P. Dellemann, K. Michalow, T. Graule, D. Ferri and A. Baiker, *Applied Catalysis B: Environmental*, **79**, 53 (2008)
- 8. C.F. Lin, C.H. Wu and Z.N. Onn, *Journal of Hazardous materials*, **154**, 1033 (2008)
- Y.T. Kwon, K.Y. Song, W.I. Lee, G.J. Choi and Y.R. Do, *Journal of Catalysis*, **191**, 192 (2000)
- H. Irie, S. Washizuka, N. Yoshino and K. Hashimoto, *Chemical Communications*, 1298 (2003)
- K.Y. Song, M.K. Park, Y.T. Kwon, H.W. Lee, W.J. Chung and W.I. Lee, *Chemistry of Materials*, 13, 2349 (2001)
- 12. S. Eibl, B.C. Gates and H. Knözinger, *Langmuir*, **17**, 107 (2001)
- 13. H. Tian, J.F. Ma, K. Li and J.J. Li, *Materials Chemistry and Physics*, **112**, 47 (2008)
- 14. Y. Li, J. Liu and Z. Jia, *Materials Letters*, **60**, 1753 (2006)
- 15. S. Yin, R. Li, Q. He and T. Sato, *Materials Chemistry and Physics*, **75**, 76 (2002)
- S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki and S. Yoshikawa, *Journal of Photochemistry and Photobiology A: Chemistry*, 184, 163 (2006)
- 17. W. Ho, J.C. Yu and S. Lee, *Chemical Communications*, 1115 (2006)
- 18. Q. Zhang and L. Gao, *Langmuir* **19**, 967 (2003)
- 19. S. Yamabi and H. Imai, Chemistry of Materials,

14, 609 (2002)

- 20. J.X. Li, W.L. Dai, H.X. Li and K.N. Fan, *Applied Catalysis B: Environmental*, **82**, 233 (2008)
- 21. V. Puddu, R. Mokaya and G.L. Puma, *Chemical Communications*, 47, 49 (2007)
- 22. C.S. Fu, C. Lei, G. Shen and C.G. Yu, *Powder Technology*, **160**, 198 (2005)