Photocatalytic Performance Evaluation of Bismuth Doped Tin-Dioxide under UV and Direct Sunlight Irradiation for Congo Red Dye Degradation

Nauman Ali et al.,

Institute of chemical science, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
2Department of chemistry, Faculty of science, King Abdulaziz University, Jeddah, Saudi Arabia.
3Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia.

(Received on 24th June 2019, accepted in revised form 8th June 2020)

Summary: In the current research work, bismuth doped tin-dioxide (Bi-SnO$_2$) was prepared by wet chemical co-precipitation method. The synthesized material was used as a photocatalyst in the degradation of congo red dye (CR) in its aqueous solution. The prepared catalyst was used in the uncalcined- and calcined forms for the photocatalytic reaction. The synthesized catalyst in both forms was characterized by UV-visible spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The XRD revealed that the calcination of the Bi-SnO$_2$ improved its crystallinity. The SEM showed that the Bi-SnO$_2$ had average size less than 150nm. Photocatalytic degradation of CR dye was carried out under ultra-violet light as well as under sunlight. While testing the photocatalytic degradation performance, it was found that more than 80% of the CR was degraded by using Bi-SnO$_2$ nanoparticles under both lighting conditions. Moreover, the calcined Bi-SnO$_2$ nanoparticles showed better photocatalytic performance as compared to its uncalcined form. The present work provides a viable way to make efficient photocatalyst based-on Bi-SnO$_2$ to employ under UV and sunlight for the degradation of the CR dye without the need of oxidizing or reducing agents.

Key Words: Bismuth doped tin-dioxide, Photocatalytic degradation, UV and sunlight, Hydroxyl free radicals, calcination.

Introduction

Dyes are used to color various products at many industries such as, leather tanning, paper, oils, and textiles [1]. During its processing, dyeing material is released from these industries as a wastewater [2, 3]. Many of these dyes are toxic, thus they create a major environmental problem by contaminating water bodies which adversely affect the living organisms [1-5]. Many types of dyes like acidic, basic, solvent, disperse; vat, sulfur and reactive dyes are used by these industries. Each type of dye has a very peculiar chemistry, structure and specific way of bonding to other materials. According to one of the previous report, as high as 5000 tons of coloring material are annually discharged to the environment by various industries [4]. The manipulation of synthetic dyes in our daily life have increased dramatically as compared to former times [5–7]. These poisonous dyes in the wastewater impart many mutagenic as well as noxious effects on human health [8, 9]. So far, numerous convenient methods have been established for the removal of these dyes from wastewater. For instance, the removal of dyes from wastewater had been performed by adsorption process [10, 11], advanced oxidation processes by using high energy radiations [12], and oxidation methods which involve cavitation and ozonation. Moreover, some other methods like sonophotocatalysis [13], chemical reduction process [14–22], and degradation by biological species including algae, fungi, bacteria also played effective role in the removal of dyes from wastewater [15, 23–28]. Even though, all the above processes mentioned are considered as efficient methods for the dye removal but one of the most effective procedure used for the present work is metal oxide based photocatalytic degradation of the dyes. The transition metal oxides act as a catalyst for the generation of electron which degrades the dyes in the irradiations of the UV or sunlight. These catalyst enhances partial oxidation and degradation of azo dyes [29].

It has been a well-established fact that recent years have seen enormous progress in the field of nanotechnology by introducing various functional materials [30–35]. In the past studies, variety of different metal oxides were synthesized and their ability was tested to photo-degrade different toxic dyes or by using a strong reducing agent [5, 14–16, 29, 36–52]. Among many available semiconductor photocatalysts, tin oxide (SnO$_2$) is considered as one of the most effective material for advanced environmental applications. In the past, the SnO$_2$ nanoparticles by a hydrothermal method [53]. The SnO$_2$ nanoparticles was assessed for the photocatalytic degradation of three different toxic
dyes namely eosin red, methylene blue, and congo red (CR) under UV light radiations [53]. The CR was removed from aqueous solution by adsorption on SnO$_2$ as well as photodegradation. It was reported that the CR was photodegraded by SnO$_2$ with an efficiency of more than 90% in short time. Similarly, the n-type SnO$_2$ nanoparticles photo-catalytically degraded the methylene blue and eosin red dyes with high catalytic efficiency [53]. In another report, plasma electrolytic oxidation approach was utilized for the synthesis of TiO$_2$/SnO$_2$ photocatalyst which degraded methyl orange dye [54]. According to their results, the TiO$_2$/SnO$_2$ nanoparticles were able to photodegrade the methyl orange dye up to 60% in short time. Recently, researchers synthesized the CdS/SnO$_2$ hybrid photocatalyst nanostructures. They adopted a two-step procedure of co-precipitation followed by hydrothermal treatment for the preparation of hybrid catalyst [55]. The photodegradation efficiency of 95% was achieved for the methyl orange by utilizing it in a small quantity of 0.3g and 50ppm of the methyl orange during their experiments [55]. Similarly, Lee et al (2019) synthesized the Zn$_2$SnO$_4$/SnO$_2$ in the form of urchin-like hollow spheres [56]. They used the hydrothermal process for the preparation of this material and the as synthesized material was annealed at 800°C to get the crystalline material. Upon using Zn$_2$SnO$_4$/SnO$_2$ photocatalyst, the methylene blue dye was degraded. It was found that the urchin-like Zn$_2$SnO$_4$/SnO$_2$ hollow spheres photodegraded it with more than 80%. Bismuth containing compounds along-with SnO nanostructures have been proved to be versatile catalysts. For example, nanofibers of SnO$_2$/Bi$_2$O$_3$/BiOI were prepared by electrospinning followed by chemical etching technique [57]. The process was performed at room temperature and the synthesized SnO$_2$/Bi$_2$O$_3$/BiOI nanofibers were able to swiftly photodegrade the methyl orange and reduce the Cr (VI) with visible light radiations. All the above stated studies are pointing towards the better photocatalytic properties of the SnO$_2$ when combined with other photocatalysts or simply doping of the other metals to the SnO$_2$ crystals [29].

In continuation of the above listed photocatalytic studies, it was attempted to determine the feasibility of the total degradation by a combination of photocatalyst and UV treatment of an azo dye of CR. In the present study, we prepared bismuth doped tin oxide (Bi-SnO$_2$) nanomaterial for photocatalysis by co-precipitation followed by annealing method. The prepared material was subjected to different instrumental techniques for characterization and successful preparation of the aimed nanomaterial was confirmed. The photocatalytic degradation of CR in water was assessed by utilizing the calcined and uncalcined Bi-SnO$_2$ samples.

Experimental

Instruments and Equipments

- pH-meter (Model 3505, voltage 9 VAC, Frequency 50/60 Hz, Power 6 VA) was used to determine the pH of the solutions. Magnetic Stirrers (GR BOTEK MS-HS 250 V AC, Guohua electric appliance Co. LTD) was used to accelerate the mixing process. Digital Balance (Adventurer Ohaus Corp, Pine Brook, NJ USA Power 8-14.5V – 50/60 Hz 6 VA or 9.5-20 V (6 watt)) was used to measure the quantities of the dye during solutions preparation and weigh the photocatalyst doses. UV-Visible Spectrophotometer (company BMS, Model NO 1202 UV-spectrophotometer, Power source AC 110 volt/ 3.15A) was used during the photocatalytic degradation reaction to measure the dye concentration.

Materials

- Congo red dye (3,3’-[(1,1’-biphenyl]-4,4’-diyl)bis(4-aminonaphthalene-1-sulfonic acid), C$_{32}$H$_{22}$N$_{6}$Na$_2$O$_5$S$_2$, 696.665 g/mol), ethanol, bismuth nitrat penta hydrate (Bi(NO$_3$)$_3$.5H$_2$O, 485.07), tin chloride (SnCl$_2$.2H$_2$O, 225.63g/mol) and ammonium hydroxide (NH$_4$OH, 35.04g/mol) were bought from Sigma Aldrich. All the chemicals used in this experimental work were of analytical grade which were used without further purifications. Deionized water was used in the whole experimental work.

Synthesis of bismuth-doped tin oxide nano photocatalysts

The bismuth-doped tin oxide (Bi-SnO$_2$) photocatalytic nanoparticles were prepared by wet chemical co-precipitation approach. Briefly, Bi(NO$_3$)$_3$.5H$_2$O and SnCl$_2$.2H$_2$O salts were used as the bismuth and tin sources, respectively. Appropriate amounts of the Bi(NO$_3$)$_3$.5H$_2$O and SnCl$_2$.2H$_2$O salts in a 0.5:9.5 molar ratio were dissolved in deionized water at high speed magnetic stirring. To improve their solubility, hydrochloric acid was added. After complete dissolution, the solution was filtered. Under the magnetic stirring of the solution, the addition of NH$_4$OH (0.6 M) was done until the solution pH reached 12. As a result, precipitate was formed, then it was cooled and washed several times with deionized water and dried at 80°C. The obtained
product of $\text{Bi}_x\text{Sn}_{1-x}\text{O}_2$ (with $x = 0.5$) was grinded to fine powder. The obtained fine powder was divided into two equal parts. The calcination process was performed at 600 °C for 4 h at the rate of 5 °C per min for one part while the other part (as uncalcined form) was used in the further experiments.

Evaluation of photocatalytic activity for Congo Red degradation

Congo red (CR) stock solution was prepared by dissolving its appropriate amount in de-ionized water to give a final concentration of 0.06 mM. The container of solution was covered from light using aluminum foil.

The photocatalytic tests were performed on both the calcined and uncalcined samples by degrading CR as pollutant. The degradation process, 0.5 g photocatalyst was mixed with 50 mL aqueous solution of CR (0.06 mM) and the container was charged with magnetic stirrer to constantly disperse the photocatalyst in the reaction medium. An initial reading of this CR solution was recorded by UV-visible spectrophotometer. The mixture was then exposed to a 250 W Xe lamp for 3 h. At constant interval of time, 3 mL of the solution was withdrawn from the reaction medium which was analyzed by UV-visible spectrophotometer. The degradation of the CR was estimated by the following equation,

$$\text{Degradation} (%) = \frac{C_0 - C_t}{C_0} \times 100 = \frac{A_0 - A_t}{A_0} \times 100 \quad \text{(Equation 1)}$$

where C_0 and C_t represent the concentration of CR solution at time zero and time t which are proportional to the Absorbance values at λ_{max} 497 nm (A_0 and A_t represent the absorbance values at time zero and time t.)

Similar procedure was used for another reaction where sunlight was used instead of simulated light from 250 W Xe lamp. Sunlight experiments were performed during day-time between 10:00 AM to 2:00 PM in the institute lawn where the beaker contents were exposed to the clear sky sunlight. It is important to note that prior to the photocatalytic reaction, the CR + Bi-SnO$_2$ mixture was placed in dark under stirring for about 30 min to attain maximum adsorption-desorption equilibrium.

Results and Discussion

Characterization of the photocatalytic Bi-SnO$_2$ nanoparticles

The calcined and un-calcined product was characterized by various techniques as detailed in the proceeding text.
Structural characterization by X-ray Diffraction analysis

Identification and phase composition of calcined Bi-SnO$_2$ were investigated by XRD method. Fig. 2a and b show the XRD patterns of the uncalcined and calcined Bi-SnO$_2$ powders, respectively. The XRD pattern of unclaimed Bi-SnO$_3$ represents irregular crystal size or typical peaks for polycrystalline material. Usually, on XRD patterns of as synthesized metal oxide, it is difficult to observe the diffractions because of the extremely small particle size in the sample. This observation is in line of previously reported data on the synthesis of the transition metal or their oxide nanoparticles [41, 58]. The peaks appeared after annealing the sample at T > 300-600°C in XRD patterns typical for polycrystalline material. It was observed that diffraction peaks appeared after drying the Bi-SnO$_2$ samples at 80°C. However, after calcination, the as synthesized and dried sample at temperature of 600°C, the XRD pattern showed clear diffractions. The peaks observed at 2θ positions of 26.55, 33.82, 37.84, 51.87, 54.62, 61.79, 65.59, 71.32 and 78.82 which represent to (110), (101), (200), (211), (220), (301), (320) and (321) reflection planes of the tetragonal rutile phase of SnO$_2$, respectively (JCPDS card #: 41-1445). No peaks from the impurity such as oxides of bismuth or tin were detected which show that the current method could be used effectively for the synthesis of the Bi-SnO$_2$ photocatalyst.

SEM Analysis

The SEM study was performed for the morphology and size of the Bi-SnO$_2$ photocatalytic nanoparticles. Fig 3a and b show the SEM images of the uncalcined and calcined samples of Bi-SnO2 nanoparticles. The uncalcined Bi-SnO$_2$ nanoparticle are present in larger clusters and in agglomerated form. After calcination of Bi-SnO$_2$ at 600 °C for 3 hs, the agglomerated form changed to smaller sized nanoparticles. The porosity was a little greater in uncalcined Bi-SnO$_2$ than calcined photocatalyst. The scanning electron microscopy results of both samples showed that the size of nanoparticle is less than 150nm.

Fig. 2: XRD patterns of (a) uncalcined and (b) calcined Bi-SnO$_2$.

Fig. 3: SEM images of (a) uncalcined and (b) calcined Bi-SnO$_2$.
Band gap of bismuth-doped tin dioxide

The band gap of photocatalysts was calculated by dispersing (sonicated for two h) 0.02 g of the sample in 20 mL distilled water as well as 2 mL of H₂SO₄. The UV-visible spectra was recorded from a fresh suspension. Fig 4a shows absorption spectrum of Bi-SnO₂ nanoparticles suspension. From the graph, a portion of wavelength which gives fundamental peak was selected and Tauc plot was drawn having absorbance co-efficient on y-axis and binding energy on x-axis. The band gap was calculated from Tauc’s equation given below,

\[\alpha h \nu = A (h \nu - E_g)^\alpha \]

(Equation 2)

where ‘α’ is absorption coefficient, ‘A’ is constant (2 for direct and 1/2 for indirect band gap semiconductors), hν is the photon energy and E_g is band gap energy. A plot between \((\alpha h \nu)^2\) and hν was obtained and the band gap was determined by taking the intercept extrapolation to zero absorption with photon energy axis.

Photodegradation of congo red dye

The CR dye degradation by the photocatalyst was assessed in its aqueous solution as model chemical. Photocatalysis is the best technique for the effective degradation of CR and other dye pollutants. It is based on the photogeneration of positive holes and separated electrons in semiconductor particles. These negatively charged electrons either recombine inside the particle or move to the upper surface and here they react with adsorbed molecules. Positive holes help in oxidizing organic compounds, while electrons mainly cause reducing molecular oxygen to superoxide radical anions. Recombination of photogenerated electrons and positive holes inside the semiconductor particles are accountable for the relatively less quantum yield of photocatalytic reaction. CR is characterized by an azo group which has carcinogenic and toxic effects. This dye is widely used in the laboratories and has been used as model dye in the evaluation of the photocatalysts and other catalysts [40]. Photocatalytic degradation of CR was carried out under both sunlight and UV-light emitting lamp. The effect of photocatalysis under sun-light and UV-lamp has been investigated for different intervals of time by recording the UV-visible spectra from the CR solution. For this purpose, 50mL solution of 0.06mM CR concentration was taken in a vial along with the measured 0.5g amount of photocatalyst. The mixture of CR solution and Bi-SnO₂ nanoparticles was placed on stirring plate with continued stirring process in dark for 30 min. A UV-visible spectrum was recorded before starting this process. Similarly, another UV-visible spectrum was recorded after 30 min and the decrease in the concentration was determined which was due to the adsorption of the CR molecules on the Bi-SnO₂ nanoparticles. After this, the CR solution containing Bi-SnO₂ was brought under the light conditions (either sun-light or UV light). The UV-visible absorption spectra were continuously recorded in the range of 250-700 nm by UV-visible spectrophotometer until the CR solution looked visibly transparent. Fig 5a shows the UV-visible spectra of the CR dye solution which were continuously measured during the photocatalytic reaction by a calcined Bi-SnO₂ nanoparticles in the presence of sunlight. The CR solution showed two absorption peaks at 344 and 497 nm in its UV-visible spectrum. The high intensity peak at 497 nm was considered as \(\lambda_{\text{max}}\) and it was used in equation 1. An absorption peak at 497 nm continuously decreased with the reaction time. As reported earlier[59], a photon of proper energy interacts with the molecules of dye in water in the existence of photocatalyst and releases a hydroxyl radical during the exposure to light. By the interaction of these free radicals with the molecules of dye, the dye degrades with time. This advanced photo activated chemical reaction causes the oxidation of dye and resulted in degradation which observed by the bleaching of dye determined by the UV-spectra. The degradation percentage of different photocatalysts in different irradiation sources is compared in the following Figs. Fig 5b shows degradation of Congo red with uncalcined Bi-SnO₂ in UV light. It is clear from this Fig that uncalcined Bi-SnO₂ photo-catalytically degraded the CR dye up to 82% in the sunlight while 75% degradation was achieved in the UV-light. Fig 5c represents degradation of CR red with calcined Bi-SnO₂ in UV- and sun-light. It is apparent from this Fig that calcined Bi-SnO₂ photo-catalytically degraded the CR dye to more than 85% in 140 min during both the lighting conditions. Based on the results obtained, it can be concluded that the annealing treatment for the Bi-SnO₂ nanomaterial effectively improves their photocatalytic properties.
Fig. 4: (a) Uv-visible absorption spectrum of Bi-SnO$_2$ and (b) corresponding Tauc plot.

Fig. 5: Typical UV-visible spectra of the CR degradation by a calcined Bi-SnO$_2$ photocatalyst in the sunlight (a), percent degradation of the CR in the presence of (b) uncalcined and (c) calcined Bi-SnO$_2$ nanoparticles. The panels (b-c) consist of experimentally determined percent degradation values in both the lighting conditions.
Conclusion

A metal oxide photocatalyst (Bi-SnO$_2$) was by wet chemical co-precipitation method for the degradation of CR dye. The successful Bi-SnO$_2$ nanomaterial preparation was confirmed by XRD technique. The degradation of CR dye was carried out under two light sources which were UV-light emitting lamp and direct sunlight. The photodegradation efficiency of the Bi-SnO$_2$ photocatalyst was investigated and it was found that after 140 min the degradation percentage of the prepared catalyst was 85% and 95% by calcined Bi-SnO$_2$. The prepared calcined photocatalyst showed superior photocatalytic activity in sunlight. The greatly enhance photodegradation performance to CR are mainly attributed to the enhanced light absorbance of the photocatalyst and plentiful active adsorption sites due to high surface area. Both hydroxyl radicals and photogenerated holes were identified as the main active species in the photo-decolorization process of the CR dye. The greater photocatalytic performance of the specified photocatalyst exhibit great potential on photodegradation of other organic pollutants under sun-light.

References

18. T. Kamal, I. Ahmad, S. B. Khan, and A. M. Asiri, Agar hydrogel supported metal