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Summary: QSPR studies on sulfonamides have been made using recently introduced topological
methodology. In this  study the relationship  between the  Randic'  (1X), Balaban (J),  Szeged (Sz),
Harary (H),  Wiener  (W), Hyper-Wiener  (WW),  Wiener  Polarity  (WP) and one  other  descriptor,
namely, the LUMO energy (Elumo) to the thermal energy (Eth  kJ/mol), heat capacity (CV J/molK) and
entropy (S J/molK) of 41 sulfonamides is represented. Physicochemical properties and the quantum
chemical parameter are taken from the quantum mechanics methodology with HF level using the ab
initio  6-31G  basis  sets.  The  multiple  linear  regressions  (MLR)  and Back  ward  methods  (with
significant at the 0.05 level) were employed to give the QSPR models. The satisfactory obtained
results show that combining the three descriptors (J, Elumo, H) are excellent descriptors for predicted
(CV)and(S), the three descriptors (1X, J, Elumo) are useful descriptors for predicted (Eth) of the 41
sulfonamides.
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Introduction

Quantitative structure–property relationships
(QSPRs)  have  provided  a  valuable  approach  in
research into physico-chemical properties of organic
chemicals [1]. Many investigators have used quantum
–  chemical  parameters  [2-6].  Among  the  different
approaches  employing  computational  chemistry,
those  based  on  chemical  graph  theory  have  been
useful in establishing QSPR [7].

The basic strategy  of  QSPR is  to  find the
optimum quantitative relationship which can then be
used for the prediction of the properties of molecular
structures  including  those  unmeasured  or  even
unknown  [8-10].  The  premise  of  QSPR  is  that
physicochemical  properties  can  be  correlated  with
molecular  structure  characteristics  (geometric  and
electronic)  expressed  in  terms  of  appropriate
molecular descriptors [11].

QSPR have been traditionally developed by
selecting,  a  priori,  an  analytical  model  (typically)
linear,  polynomial  or  lag-  linear  to  quantity  the
correlation  between  selected  molecular  indices  and
desired  physicochemical  properties,  followed  by
regression  analysis  to  determine  model  parameters
[12-15].

Sulfonamides  represent an  important  class
of  biologically  active  compounds. With  the
sulfanilamides as the lead structure, different classes
of pharmacological  agents  have been obtained such
as  antibacterial  sulfanamides,  sulfonamides  that

inhibit  the zinc enzyme carbonic  anhydrase  (CA’s).
The ring substituted benzene sulfonamides containing
-SO2NH2 groups have similar activities.

The hypoglycemic sulfonamides extensively
used  in  the  treatment  of some  forms  of  diabetes,
antithyroid drugs, and others [16].

In  the  present  study,  the  multiple  linear
regression (MLR) techniques and back ward methods
are  used  for  modeling  the  thermal  energy  (Eth

kJ/mol),  heat  capacity  (CV J/molK)  and entropy (S
J/molK) of 41 sulfonamides.

This method is useful when there is not any
interaction  between  descriptors  and  their  relation
with  linear  defined  activity.  Heat  capacities  are
applied  in  reactions  for  modification  of  reactants
evaluation.  In  addition,  they  are  useful  for  heat  -
energy balance design calculation. On the other hand,
the tests for  determining the heat  capacity,  entropy
are  expensive  and  expense  much  more  time.
Therefore,  we  need  the  models  to  predict  the  heat
capacity  and  other  physico-chemical  properties  of
molecules.

The proposed QSPR models were based on
molecular  descriptors  (topological  indices)  that  can
be  calculated  for  any  compound  utilizing  only  the
knowledge  of  its  molecular  structure  (molecular
graph).
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Experimental

The  sulfonamides  discussed  in  this  study
consist  of  41 derivatives  with substitution at  2-,  3-
and 4- position as well as having some di-substitution
on the aromatic nucleus (the N phenyl group).  Fig 1
shows the template structure of sulfonamides used in
the present study.

NH

S
O

O

NH2

Scheme-1: The structural template of sulfonamides.

Quantum Chemistry Calculations

The thermal energy (Eth), heat capacity (CV),
entropy  (S)  and  LUMO  energy(E lumo)  of  41
sulfonamides are taken from the quantum mechanics
methodology with Hartree- Fock (HF) level using the
ab initio 6-31G basis sets and the standard procedure
in  GUSSIAN  03.  This  software  is  an  electronic
structure  package  capable  of  predicting  many
properties of atoms, molecules, and reactive systems.
The quantum chemistry data of the 41 congeners are
listed in Table-1. 

Topological Indices

Nowadays,  in  the  literature,  hundreds  of
topological  indices,  suitable  to  describe  different
properties, are reported. The topological indices(Tis)
used  for  the  QSPR analysis  were  Wiener  (W)[17],
Szeged  (Sz)  [18],  first  order  molecular
connectivity(1X)  [19],  Balaban(J)  [20],  Hyper-
Wiener(WW)  [21],  Wiener  Polarity(WP)[22]  and
Harary(H)  [23]  indices.  Moreover,  many
investigations were carried out with such descriptors
[24-26].

All  the  used  topological  indices  were
calculated  using  all  hydrogen  suppressed  graph  by
deleting  all  the  carbon  hydrogen  as  well  as
heteroatomic  hydrogen bonds from the  structure  of
the  sulfonamides.  The  descriptors  were  calculated
with  chemicalize  program  [27].  Seven  topological
indices  tested  in  the  present  study  are  recorded  in
Table-2.

Statistical Analysis

Structure-  Property  models  (MLR  models)
are  generated  using  the  multi  linear  regression
procedure  of  SPSS  version  16.  The  thermal
energy(Eth kJ/mol),  heat  capacity (CV J/molK)  and
entropy(S J/molK) are used as the dependent variable
and 1X, J, Sz, H, WP, WW and LUMO energy(E lumo)
indices as the independent variables. The models are
assessed with R value (correlation coefficient), the R2

(coefficient of  determination),  the R2-  adjusted,  the
RMSE value (root of the mean square of errors), the
F  value  (Fischer  statistic),  the  DW value  (Durbin-
Watson) and the Sig (Significant).

Table-1: Structural  details  and  their  thermal  energy  (Eth),  heat  capacity  (CV)  and  entropy  (S)  for  the
sulfonamides used in present study

Substituents
No. mol

kJEth molK
JCv

molK
JS Substituents No.

mol
kJEth molK

JCv molK
JS

4-NMe2 1 886.871 292.805 609.210 4-CN 22 670.995 256.397 555.246
2-OMe 2 768.982 268.306 571.920 4-COCH3 23 784.933 280.779 589.062

2- OC2H5 3 852.131 287.137 601.845 4-NO2 24 683.455 265.656 570.980
4-OMe 4 767.603 269.238 572.359 4-SO2CH3 25 783.198 310.896 631.460

4- OC2H5 5 851.809 286.539 623.510 2,3-di-Me 26 833.442 278.835 576.853
4-Me 6 751.108 256.021 566.244 2-Me,5-Cl 27 727.709 272.298 578.838
2-Me 7 751.501 255.875 548.320 2-Me,6-Cl 28 728.265 270.275 569.053
3-Me 8 751.087 256.213 567.088 3,4-di-Cl 29 621.900 263.904 580.309

H 9 669.561 231.802 521.463 3,5-di-Cl 30 621.708 264.657 582.654
3- OC2H5 10 850.630 288.625 607.647 2-Cl,4-OMe 31 744.220 284.470 596.954
3- OMe 11 767.427 269.564 577.212 2-OMe, 4-Cl 32 745.357 284.612 600.102

4-Cl 12 645.873 247.974 550.289 2-Cl,4-NO2 33 660.068 280.929 596.231
4-Br 13 645.839 248.969 561.081 2-Me,4-NO2 34 764.555 289.653 600.679
2-Br 14 647.344 248.359 542.882 4-Me,2-NO2 35 765.500 288.178 603.295

4-SO2NH2 15 750.640 310.770 636.986 2-Br,4-NO2 36 660.181 281.628 605.695
3-SO2NH2 16 749.491 311.410 641.542 4-NO2,2-CF3 37 706.048 316.388 638.432

3-Cl 17 645.693 248.233 552.270 2-Cl 38 646.700 247.711 549.620
3-Br 18 645.622 249.241 562.381 2-SO2NH2 39 751.986 305.094 599.667

3-NO2 19 682.214 266.354 577.517 4-Ethyle 40 835.160 274.045 584.565
3-CF3 20 692.154 283.366 606.719 3-Ethyle 41 835.085 274.250 586.132
4-CF3 21 693.052 283.015 605.348
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Table-2: Descriptor values used in present study.
Comp. No.  1 J H W WW WP Sz Elumo/ev Comp.No. 1 J H W WW WP Sz Elumo/ev

1 9.381 1.800 64.46 880 3188 29 1324 2.965 22 9.009 1.801 59.81 758 2633 27 1148 2.285
2 9.026 1.912 60.80 714 2285 28 1060 2.938 23 9.382 1.800 64.46 880 3188 29 1324 2.203
3 9.526 1.912 65.16 831 2769 29 1209 2.965 24 9.382 1.800 64.46 880 3188 29 1324 0.980
4 9.009 1.801 59.81 758 2633 27 1148 2.910 25 9.682 1.816 69.60 1004 3746 31 1502 2.312
5 9.509 1.771 63.85 897 3324 28 1341 2.910 26 8.899 1.921 61.19 710 2269 29 1068 2.856
6 8.471 1.825 55.66 638 2081 25 974 2.883 27 8.882 1.916 61.05 712 2278 28 1072 2.557
7 8.488 1.890 56.24 616 1918 26 930 2.802 28 8.899 1.950 61.45 700 2197 29 1048 2.448
8 8.471 1.855 55.9 627 1994 25 952 2.856 29 8.882 1.861 60.61 732 2432 28 1112 2.312
9 8.077 1.837 51.29 536 1649 23 818 2.829 30 8.865 1.887 60.76 722 2349 27 1092 2.258

10 9.509 1.836 64.41 864 3030 28 1275 2.802 31 9.420 1.875 65.21 847 2927 30 1273 2.611
11 9.009 1.853 60.22 736 2448 27 1140 2.774 32 9.420 1.924 65.63 825 2742 30 1229 2.747
12 8.471 1.825 55.66 638 2081 25 974 2.557 33 9.793 1.880 70.06 974 3497 32 1456 0.680
13 8.471 1.825 55.66 638 2081 25 974 2.560 34 9.793 1.880 70.06 974 3497 32 1456 0.680
14 8.488 1.890 56.24 616 1918 26 930 2.693 35 9.793 1.880 70.89 974 3127 32 1456 0.762
15 9.680 1.730 69.60 1004 3746 31 1502 2.258 36 9.793 1.880 70.06 974 3497 32 1456 0.734
16 9.680 1.810 70.37 960 3365 31 1414 1.958 37 11.004 2.052 86.85 1325 4778 38 1921 0.435
17 8.471 1.855 55.90 627 1994 25 952 2.557 38 8.488 1.900 56.24 616 1918 26 930 2.638
18 8.471 1.855 55.90 627 1994 25 952 2.584 39 9.700 1.910 71.43 916 3028 32 1326 1.958
19 9.382 1.869 65.05 847 2905 29 1258 0.843 40 9.010 1.620 59.81 758 2633 27 1148 2.883
20 9.682 1.900 70.37 960 3365 31 1414 2.285 41 9.010 1.670 60.22 736 2448 27 1104 2.856
21 9.682 1.816 69.60 1004 3746 31 1502 2.421

Results and Discussion 

Several linear QSPR models involving three-
eight  descriptors  are  established  and  strongest
multivariable correlations are identified by the back
ward  method  are  significant  at  the  0.05  level  and
regression analysis of the SPSS program.

In the first of this study we drown scattering
plots of CV,  S and Eth versus the seven topological
indices (1X, J, W, Sz, WW, WP, H) and, Elumo. Some
of these plots are given in Fig. (1-3), respectively.

Fig. 1: Plots of the Harary index (H) versus heat of 
capacity (Cv) of 41sulfonamides.

Fig. 2: Plots  of  the  Randic  index  (1X)  versus
entropy(S) of 41 sulfonamides.

Fig. 3: Plots  of  the  LUMO  energy  (Elumo)  versus
thermal energy (Eth) of 41 sulfonamides.

Distribution  of  the  dependent  variable
against  the  independent  variable  for  41chemicals
employed  in  developing  quantitative  structure-
Properties  relationship.  For  obtaining  appropriate
QSPR model we have used maximum R2 method and
followed  Back  ward  regression  analysis.  The
predictive  ability  of  the  model  is  discussed  on  the
basis of predictive correlation coefficient. 

QSPR Models for Heat Capacity (CV)

Initial  regression  analysis  indicated  that
combination  of  seven  topological  indices  and  Elumo

plays  a  dominating  role  in  modeling  the  heat
capacity.  In  Table-3  are  given  the  regression
parameters and quality of correlation of the proposed
models for heat capacity of 41 sulfonamides.

It turns out that the heat capacity (CV) has a
highly correlation with all descriptors as well as with
a  combination  of  the  four  parameters,  namely,  the
LUMO energy (Elumo),  Balaban (J),  Harary (H) and
Wiener Polarity (WP) indices. Fig 4 shows the linear
correlation  between  the  observed  and the  predicted
heat capacity values obtained using Eq. (1).
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Table-3: Regression parameters  and quality  of
correlation  of  the  proposed  models  for  the
heat capacity.
Model independent variables R R2 R2

adj RMSE F

1 Elumo, J, WP, 1X, H ,Sz ,W, WW 0.954 0.911 0.888 6.718 40.804

2 Elumo, J, WP, 1X, H ,Sz ,W 0.954 0.911 0.892 6.620 48.015

3 Elumo, J, WP, 1X, H,W 0.954 0.910 0.895 6.529 57.586

4 Elumo, J, WP, H,W 0.954 0.910 0.897 6.451 70.736

5 Elumo, J, WP,H 0.953 0.908 0.898 6.426 88.938

Model 3.1.5

CV =28.092–  3.759J+  0.489H+  0.918  WP  +2.605
Elumo (1)

N=41, R=0.953, R2=0.908, R2
adj=0.898 

RMSE=6.426, F=88.938, Sig=0.000, DW=1.429

Fig. 4: Comparison  between  the  predicted  and
observed  values  of  heat  capacity  by MLR
(Eq. 1).

QSPR Models for Thermal Energy (Eth)

In  Table-4  are  given  the  regression
parameters  and  quality  of  correlation  of  the
proposed  models  for  the  thermal  energy  of  41
sulfonamides. 

Table-4: Regression parameters  and quality  of
correlation  of  the  proposed  models  for  the
thermal energy.
Model independent variables R R2 R2

adj F RMSE

1 Elumo, J, WW, WP, 1X, H, Sz, W 0.823 0.678 0.597 8.414 45.704

2 Elumo, J, WW, WP, 1X, H, W 0.815 0.665 0.593 9.339 45.921

3 Elumo, J, WW, WP, 1X, H 0.804 0.647 0.584 10.370 46.431

4 Elumo, J, WW, 1X, H 0.797 0.635 0.582 12.156 46.539

5 Elumo, J, WW, 1X 0.782 0.611 0.568 14.130 47.350

Statistically significant models are obtained
when four descriptors are used and that the quality of
the model goes on improving with higher parametric
modeling  (Table-4),  the  tetra  parametric  model

containing  four  descriptors  (Elumo,  J,  WW,  1X)  is
found as below:
Model 3.2.5

Eth = -129.111 + 59.4581X - 102.257 J– 0.032 WW
+418.521 Elumo (2)

N= 41, R= 0.782, R2 =0.611, R2
adj =0.568,  S=47.351

F= 14.130, Sig = 0.000, DW=0.947 

Fig 5 shows the linear correlation between
the  observed  and  the  predicted  thermal  energy
values obtained using Eq. (2). 

Fig. 5: Comparison  between  the  predicted  and
observed values of thermal energy by MLR
(Eq.2).

In  Table-5  are  given  the  regression
parameters and quality of correlation of the proposed
models for the entropy of 41 sulfonamides.

Table-5: Regression  parameters  and  quality  of
correlation of the proposed models for the entropy.
Model independent variables R R2 R2

adj RMSE F Sig

1
Elumo, J, WP, 1X, H, Sz, W,

WW
0.937 0.879 0.848 10.795 28.988 0.000

2 Elumo, J, WP, 1X H, Sz, W 0.937 0.879 0.852 10.651 34.015 0.000

3 Elumo, J, WP, H, Sz, W 0.936 0.877 0.855 10.566 40.250 0.000

4 Elumo, J, H, Sz, W 0.935 0.874 0.856 10.521 48.573 0.000

5 Elumo, J, H, Sz 0.934 0.873 0.859 10.426 61.736 0.000

6 Elumo, J, H 0.932 0.869 0.858 10.441 81.700 0.000

It  turns out that  the entropy(S) has a good
correlation  with  all  descriptors  as  well  as  with  a
combination  of  the  three  parameters,  namely,  the
LUMO  energy  (Elumo),  Balaban  (J)  and  Harary  (H)
indices.  Fig 6 shows the linear  correlation between
the observed and the predicted heat capacity values
obtained using Eq. (3). 

Model 3.3.6

S = 102.931 -23.221J+1.155H+3.110Elumo (3)
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N=41, R= 0.932, R2 =0.869, R2
adj =0.858,

RMSE=10.441, F= 81.700, DW=1.761, Sig = 0.000 

Fig. 6: Comparison  between  the  predicted  and
observed  values  of  entropy(S)  by  MLR
(Eq.3).

We  studied  the  relationship  between
topological indices and the LUMO energy (Elumo) to
the  thermal  energy  (Eth),  heat  capacity  (Cv)  and
entropy (S) of 41 sulfonamides.

In  this  study,  to  find  the  best  model  for
predict  the  properties  mentioned,  we  will  use  the
following:

Verification and Validity of models

In this section for verification and validity of
the regression models, we will focus on the  Durbin-
Watson  statistic  and  unstandardized  predicted  and
residual values and collinearity.

Test for Autocorrelation by Using the Durbin-Watson
statistic

The Durbin-Watson statistic ranges in value
from  0  to  4.  A  value  near  2  indicates  non-
autocorrelation;  a  value toward  0 indicates  positive
autocorrelation; a value toward 4 indicates negative
autocorrelation.  Therefore  the  value  of  Durbin-
Watson  statistic  is  close  to  2  if  the  errors  are
uncorrelated. In our all models, the value of Durbin-
Watson statistic is close to 2(See eq.1-3) and hence
the errors are uncorrelated.  

Multicollinearity

Multicollinearity in regression is a condition
that  occurs  when  some  predictor  variables  in  the
model are correlated with other predictor  variables.
Severe multicollinearity is problematic because it can
increase  the variance  of  the regression  coefficients,
making  them  unstable.  Multicollinearity  does  not
affect  the  goodness  of  fit  and  the  goodness  of

prediction.  The  coefficients  (linear  discriminant
function) cannot be interpreted reliably, but the fitted
(classified) values are not affected. Multicollinearity
has  the  same  effect  in  discriminant  analysis  as  in
regression. 

In  addition,  multicollinearity  test  done  to
avoid habits in the decision making process regarding
the  partial  effect  of  independent  variables  on  the
dependent  variable.  Good  regression  model  should
not  happen  correlation  between  the  independent
variables  or  not  happen  multicollinearity.  Test
multicollinearity  as  a  basis  the  variance  inflation
factor  (VIF)  value  of  multicollinearity  test  results
using SPSS. If the VIF value lies between1-10, then
there is no multicollinearity, and if the VIF<1 or >10,
then there is multicollinearity

In all our final models, the Multicollinearity
has  not  existed,  because  the  values  of  correlations
between  independent  variables  are  not  near  to  one
and VIFs  value lies between 1-10. Furthermore  we
have computed Q2 (Eq.4) by 50% of data, randomly,
that are positive and less than one.

where the notation i|i   indicates that the response is
predicted by a model estimated when the i-th sample
was left out from the training set.

We  studied  the  validation  of  linearity
between  the  molecular  descriptors  in  the  models
3.1.5,  3.2.5  and  3.3.6.  We obtained  by  SPSS  the
pearson  coefficient  correlation  and  collinearity
statistics as follows Tables (6-8).

For model 3.1.5 the pearson correlation (H,
WP) is near one, and VIF(H),VIF(WP)>10, therefore
there is a linearity between H and WP. After removed
WP from this  model,  we  corrected  model  3.1.5  as
follows:

Cv=111.995-47.897J+3.595H+10.431Elumo (5)

N=41, R=0.949, R2=0.900, R2
adj=0.892, DW=1.252

RMSE =6.617, F=110.800, Sig=0.000, Q2=0.956  

Table-6: Correlation  between  the  molecular
descriptors (model 3.1.5).

Pearson correlations(model 3.1.5) Collinearity statistical
Corrected

model
J H WP Elumo Tolerance VIF VIF

J 1
0.29

3
0.350 -0.297      0.790 1.266 1.117

H 1 0.984 -0.664     0.30 33.808 1.821
WP 1 -0.678      0.028 35.931 -
Elumo 1      0.537 1.863 1.826
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Similarity  model  3.1.5  we  obtained
corrected model 3.2.5 as follows:

Table-7: Correlation  between  the  molecular
descriptors (model 3.2.5).

Pearson correlations(model 3.2.5) Collinearity             Corrected
Statistical              model

1X J WW Elumo Tolerance VIF VIF
1X 1 197 0.959 -0.628 0.055 18.048 1.650
J 1 0.048 -0.297 0.641 1.559 1.097

WW 1 -0.604 0.056 17.787 -
Elumo 1 0.561 1.783 1.740

Table-8: Correlation  between  the  molecular
descriptors (model 3.3.6)

Pearson correlations Collinearity statistical
J H Elumo Tolerance VIF

J 1 0.293 -0.297 0.895 1.117
H 1 0.059 0.549 1.821

Elumo 1 0.548 1.826

Eth=94.004-230.189J+70.118Elumo+98.6351X  (6)

N=41,  R=0.723,  R2=0.523,  R2
adj=0.485,  DW=1.081

RMSE =51.694,  F=13.544,  Sig=0.000,   Q2=0.999 

In model 3.3.6 there is no multicollinearity between
J, H, Elumo (Table-8).

Regular Residuals

The residual that  is the difference between
the observed value of the dependent variable (y) and
the  predicted  value  (ŷ).  Comparison  between
predicted and observed values of thermal energy, heat
capacity and entropy of respect sulfonamides show in
Table-9. Plot the residuals, and use other diagnostic
statistics, to determine whether our model is adequate
and  the  assumptions  of  regression  are  met.  The
residuals  can  also  identify  how  much  a  model
explains the variation in the observed data.

The  residuals  values  of  heat  capacity,
thermal energy and entropy expressed by Eqs.(3,5, 6)
show in Fig (7-9). The residual plot shows a fairly
random pattern. This random pattern indicates that a
linear model provides a decent fit to the data. 

Table-9: Comparison between predicted and observed values of thermal energy, heat capacity and 
entropy of respect sulfonamides

Comp. No. Observed (Cv)Predicted (Cv) Residual Observed (Eth) Predicted (Eth) Residual Observed (S) Predicted  (S) Residual
1 292.805 288.431 4.374 886.871 812.862 74.009 609.210 606.716 2.494
2 268.306 269.628 -1.322 768.982 750.172 18.810 571.920 581.507 -9.587
3 287.137 285.583 1.554 852.131 801.382 50.749 601.845 608.061 -6.216
4 269.238 271.094 -1.856 767.603 772.083 -4.480 572.359 586.518 -14.159
5 286.539 287.054 -0.515 851.809 828.306 23.503 623.510 614.454 9.056
6 256.021 254.744 1.277 751.108 711.599 39.509 566.244 556.625 9.619
7 255.875 252.871 3.004 751.501 692.634 58.867 548.320 552.986 -4.666
8 256.213 253.888 2.325 751.087 702.800 48.287 567.088 554.648 12.440
9 231.802 237.896 -6.094 669.561 666.188 3.373 521.463 534.668 -13.205
10 288.625 284.827 3.798 850.630 805.771 44.859 607.647 609.624 -1.977
11 269.564 268.658 0.906 767.427 750.577 16.850 577.212 582.107 -4.895
12 247.974 251.343 -3.369 645.873 688.740 -42.867 550.289 553.029 -2.740
13 248.969 251.375 -2.406 645.839 688.951 -43.112 561.081 553.062 8.019
14 248.359 251.734 -3.375 647.344 684.991 -37.647 542.882 551.783 -8.901
15 310.77 302.887 7.883 750.640 808.893 -58.253 636.986 618.535 18.451
16 311.41 298.694 12.716 749.491 769.443 -19.952 641.542 610.747 30.795
17 248.233 250.769 -2.536 645.693 681.835 -36.142 552.270 551.349 0.921
18 249.241 251.051 -1.810 645.622 683.728 -38.106 562.381 551.647 10.734
19 266.354 265.113 1.241 682.214 648.286 33.928 577.517 579.494 -1.977
20 283.366 297.794 -14.428 692.154 771.851 -79.697 606.719 609.422 -2.703
21 283.015 300.468 -17.453 693.052 800.723 -107.671 605.348 615.625 -10.277
22 256.397 264.574 -8.177 670.995 728.259 -57.264 555.246 579.623 -24.377
23 280.779 280.483 0.296 784.933 759.530 25.403 589.062 598.361 -9.299
24 265.656 267.726 -2.070 683.455 673.775 9.680 570.980 584.868 -13.888
25 310.896 299.331 11.565 783.198 793.080 -9.882 631.460 614.422 17.038
26 278.835 269.744 9.091 833.442 729.824 103.618 576.853 573.429 3.424
27 272.298 266.361 5.937 727.709 708.332 19.377 578.838 569.517 9.321
28 270.275 265.033 5.242 728.265 694.540 33.725 569.053 567.304 1.749
29 263.904 264.858 -0.954 621.900 703.814 -81.914 580.309 569.893 10.416
30 264.657 263.589 1.068 621.708 692.366 -70.658 582.654 566.949 15.705
31 284.47 283.843 0.627 744.220 774.622 -30.402 596.954 600.660 -3.706
32 284.612 284.424 0.188 745.357 772.879 -27.522 600.102 599.418 0.684
33 280.929 280.896 0.033 660.068 674.864 -14.796 596.231 598.663 -2.432
34 289.653 280.896 8.757 764.555 674.864 89.691 600.679 598.663 2.016
35 288.178 284.735 3.443 765.500 680.614 84.886 603.295 599.568 3.727
36 281.628 281.460 0.168 660.181 678.650 -18.469 605.695 599.259 6.436
37 316.388 330.460 -14.072 706.048 737.540 -31.492 638.432 649.924 -11.492
38 247.711 250.681 -2.970 646.700 678.833 -32.133 549.620 550.617 -0.997
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39 305.094 297.715 7.379 751.986 748.396 3.590 599.667 606.200 -6.533
40 274.045 279.481 -5.436 835.160 811.952 23.208 584.565 596.405 -11.840
41 274.25 278.279 -4.029 835.085 798.550 36.535 586.132 593.308 -7.176

Fig. 7: Plot of residuals against experimental value
with  Eq.  (6)  for  the  thermal  energy  of  41
sulfonamides.

Fig. 8: Plot of residuals against experimental value
with  Eq.  (3)  for  the  entropy  of  41
sulfonamides.

Fig. 9: Plot of residuals against experimental value
with  Eq.  (5)  for  the  heat  capacity  of  41
sulfonamides.

Conclusions

Graph theory has provided the chemist with
a variety of very useful  tools.  Tis  contain valuable
structural information as evidenced by the success of
their widespread applications in QSAR/QSPR. In this
work, the relationship between topological indices (J,
W, WW, WP, H,  1X, Sz), Elumo and the heat capacity

(CV),  entropy  (S),  thermal  energy  (Eth) of  41
sulfonamides were studied.

The  aforementioned  results  and  discussion
lead  us  to  conclude  that  combining  the  three
descriptors (Elumo, J, H) could be used successfully for
modeling and predicting the heat  capacity (CV) and
the entropy (S). Three descriptors (Elumo, J, 1X) could
be  predict  the  thermal  energy  of  compounds.  The
training set models established by MLR method have
good  correlation  of  physico-chemical  properties,
which  means  QSPR  models,  could  be  used  for
prediction  of  the  heat  capacity  (CV),  entropy  (S),
thermal energy (Eth) for a set of 41sulfonamides.
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	The residual that is the difference between the observed value of the dependent variable (y) and the predicted value (ŷ). Comparison between predicted and observed values of thermal energy, heat capacity and entropy of respect sulfonamides show in Table-9. Plot the residuals, and use other diagnostic statistics, to determine whether our model is adequate and the assumptions of regression are met. The residuals can also identify how much a model explains the variation in the observed data.


