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Summary: Electrochemical oxidation and reduction, with clean power, are key to energy conversion 

and storage. For example, electrochemical oxidation is a determining step for fuel cells, combination 

of electrochemical oxidation and reduction can form a metal-air battery. Electrochemical oxidation 

and reduction make significant contributions to prepare valuable chemicals directly and improve 

yield efficiency and reduce the three wastes, which have become one of the green methodologies. 

Ionic liquids have attracted increasing attentions in the area of electrochemistry due to their 

significant properties including good chemical and thermal stability, wide liquid temperature range, 

considerable ionic conductivity, nonflammability, broad electrochemical potential window and 

tunable solvent properties. Up to now, abundant studies of ionic liquids have reported for their 

practical applications for electrochemical reactions. This review covers recent studies on the 

applications of ILs as green and universal replacements for the traditional reagents in electrochemical 

oxidation and reduction. The adaptabilities of ILs in these reactions are predicted as a solution to the 

problems of conventional electrochemical processes and to become a powerful method in 

electrochemical oxidation and reduction. 
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Introduction 

 

The use of the electron as reagent in 

chemical reactions leads to advantages such as atom 

economy, energy conservation, high reaction 

selectivity, no auxiliaries, etc. The reaction conditions 

in electrochemistry are generally simple, the use of 

reagents is common and sufficient, molecular oxygen 

and water are mostly tolerated, and the reaction 

conditions are in accord with many rules of green 

chemistry [1]. Due to the low solubility of substrates 

in the traditional electrolyte, organic solvents should 

be added, which diminishes the ‘‘greenness’’ of the 

resulting procedures since the solvents need to be 

removed after the completion of reaction. In this 

regard, the replacement of the traditional electrolytes 

is necessary.  

 

Since the commercial significance of 

methodology processes, the recovery and recycling of 

novel electrolytes assumes great importance from the 

point of environmental hazards and economic 

viability. Ionic Liquids (ILs), completely composed 

of ions, could be designed to possess a definite set of 

properties, and can be used both as the reaction 

media and the electrolyte [2-23]. Characteristic 

interesting properties of these liquid salts include 

good ionic conductivity, nonflammability, broad 

electrochemical window, low/negligible volatility and 

vapor pressure, and wide solubility, etc. Further, due 

to their wide liquid ranges, stability at high 

temperatures, easy recoverability and reusability, 

ionic liquids were assigned as a class of economic 

and environmental-friendly materials. As a result, ILs 

have been widely used in electrochemical science 

[23]. In recent years, the introduction of ILs to 

electrochemical systems has aroused great research 

concern [24], they could be used as modifying 

materials of electrodes for the fabrication of sensors 

[25-27] due to their performance of achieving 

electron transfer (DET) directly. Besides, ILs are also 

used as reagents such as binders [28-30], co-catalysts 

[30], stabilizer [31, 32], and nonaqueous electrolytes 

[33-36]. In light of the above-mentioned advantages 

of ILs, it is envisaged that ILs would exhibit more 

highly efficient electrocatalytic activity in the 

electrochemical process. In this review, we will focus 

on applications of ILs in electrochemical oxidation 

and reduction. The purpose of this article is to review 

the electrochemical catalytic applications of the ILs 

for some chemical reactions with a strong connection 

to the chemical industry. 
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Electrochemical oxidation 

 

Electrochemical oxidation is the process by 

which incident electron enables a electrode material 

to promote a catalytic oxidation reaction. This green 

technology is simple to operate and can degrade 

many hazardous pollutants completely, which is 

proposed as an alternative for treating polluted wastes. 

Electrochemical oxidation has been successfully used 

for the treatment of wastewater, hydrogen production, 

and other applications. Shi et al. [37] prepared the 

Pt/IL1-IL2/GN nanocomposite electrocatalyst for 

methanol oxidation (Fig. 1). The prepared 

electrocatalyst exhibited highly catalytic activity and 

stability toward the oxidation of methanol. They 

found that Pt/IL1-IL2/GN electrolyte allowed the 

methanol oxidation occur at a less positive anodic 

potential with high activity compared to traditional Pt 

electrolyte. Hirano et al. [38] prepared the 

homogeneously alloyed bimetallic AuPd particles 

immobilized on an HOPG surface in IL (Fig. 2). The 

electrocatalytic activity of AuPd nanoalloy particles 

varied upon changing the fraction of Au and Pd in the 

particles. They found that alloy particles exhibited an 

Au fraction of ca. 0.61 in the oxidation, being higher 

than the activity of the pure Pt surface. Kwak et al. 

[39] demonstrated that combining anionic, 

redox-active Au25 clusters with imidazolium cations 

led to a stable ionic liquid possessing both ionic and 

electronic conductivity (Fig. 3). They found that Au25 

ionic liquid acted as a versatile matrix for 

amperometric enzyme biosensors toward the 

detection of glucose. Lu et al. [40] investigated the 

direct electrochemistry and bioelectrocatalysis of the 

horseradish peroxidase (HRP) in three [BF4]-type ILs 

(Fig. 4). It was certified that a small amount of water 

in ILs is indispensable for maintaining the 

electrochemical activity of HRP in Nafion films. 

Compared with the previous aqueous medium, the 

ionic liquid media could facilitate the direct electron 

transfer of HRP. Sugioka et al. [41] developed a 

strategy to prepare a bimetallic Au-Pt particle film 

through sequential sputter deposition of Au and Pt in 

IL (Fig. 5). The obtained Au-Pt particle films 

exhibited good catalytic activity for methanol 

electro-oxidation reaction superior to the activities of 

pure Au or Pt particles. Sahraie et al. [42] 

synthesized functionalized carbon hybrids obtained 

from nitrile-functionalized IL precursors and a ferric 

chloride mediator (Fig. 6). In particular, both the 

heteroatom type and iron were found to play crucial 

roles in improving the catalytic activity of 

functionalized carbon. The researchers noticed that 

sulfur–nitrogen codoped functionalized materials 

synthesized in the presence of ferric chloride showed 

high activity and stability. 
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Fig. 1: Methanol oxidation catalyzed by Pt/IL1-IL2/GN. 

 

https://en.wikipedia.org/wiki/Catalytic_oxidation


Nan Yao and Yu Lin Hu         J.Chem.Soc.Pak., Vol. 41, No. 02, 2019 266 

-+

+

++
+

-
-

--

Pt Au

Ionic Liquid

AuPd alloy

     NPs

 

Fig. 2: AuPd NPs preparation and its catalytic activity for ethanol oxidation. 
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Fig. 3: Illustrative Au25 ionic liquid acted as a 

versatile matrix. 
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Fig 4: Illustrative of HRP for the detection of 

H2O2. 
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Fig. 5: Illustrative obtained Au-Pt particle for 

MOR. 

  

Li et al. [43] fabricated the 

palladium-ILs-nitrogen-doped graphene 

nanocomposites as enhanced catalyst for ethanol 

electro-oxidation with graphene oxide as raw 

material and ILs as functional molecules (Fig. 7). 

They found that the catalyst exhibited good kinetics 

and catalytic performance, high tolerance and 

electrochemical stability toward ethanol oxidation. 

Compared with the previous systems, the present 

electro-catalytic system have several attractive 

features such as good kinetics, high tolerance and 

electrochemical stability, uperior electrocatalytic 

performance. Faisal et al. [44] studied the methanol 

electro-oxidation in [C1C2Im][OTf]-water on Pt(111) 

electrode and in IL [C1C2Im][OTf], respectively (Fig. 

8). The results showed that it can modify the 

adsorption properties and the catalytic activity of the 

reaction after the addition of ILs. They found that the 

[C1C2Im][OTf] could show specific interactions in 

the catalyst surface and exhibited high activity in the 

oxidation. Seguraa et al. [45] studied the degradation 

of two representative ILs, [4mbp]Cl and [emim]Cl by 

electrochemical oxidation using AO-H2O2, 

electro-Fenton (EF) and photoelectro-Fenton (PEF) 

(Fig. 9). The results showed that the compounds 

underwent an almost total mineralization with 97% 

and 94% of dissolved organic abatement by the most 

powerful PEF at high current density. 
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Fig. 6: Illustrative functionalized carbon hybrids toward the ORR. 
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Fig. 7: Pd/PDIL-NGS catalyst for ethanol electro-oxidation. 
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Fig. 8: Electro-oxidation of methanol in [C1C2Im][OTf]. 
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Fig. 9: Reaction process with AO-H2O2, EF and PEF.  

 

Chen et al. [46] developed a novel sensor 

based on carbon nanotubes (MWCNTs)/ ILs and 

applied it for the recognition of propranolol (PRO) 

(Fig. 10). Compared with the previous system, the 

MWCNTs/IL sensor could facilitate the efficient 

electro-oxidation of PRO. The prepared sensor could 

be successfully applied in the determination of the 

enantiomeric purity of reagent, and the evaluation of 

waste water treatment efficiency. Afsharmanesh et al. 

[47] reported the synthesis of ZnO/CNT 

nanocomposite for the determination of morphine on 

an IL modified carbon paste electrode (Fig. 11). They 

found that the ZnO/CNTs/ILCPE could play a good 

voltammetric sensor and show high sensitivity and 

reproducibility. Daneshvar et al. [48] prepared a 

carbon IL electrode (CILPE) based on [bmim]NTf2 

modified with GR/MWCNT hybrid composite. The 

modified electrode GR/MWCNT/CILPE could be 

used for measurement of carbamazepine (CBZ) in the 

presence of paracetamol (PA) with an excellent 

electrochemical catalytic behavior (Fig. 12). 
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Fig. 10: MWCNTs/ILs nanocomposite based sensor for the recognition of PRO. 
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Fig. 11: The mechanism for electrooxidation of morphine. 
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Fig. 12: Electrooxidation of CBZ and PA with GR/MWCNT/CILPE. 

 

Soltani et al. [49] used modified electrode 

employing NiO nanoparticle (NiO/NPs) and IL 

BMITFB in the analysis of hydroquinone (Fig. 13). 

The results showed that, the electro-oxidation signal 

was increased to about 2.5 times on 

NiO/NPs/BMITFB/MCPE compared to CPE, which 

is an effective electrode. It was found that 

NiO/NPs/BMITFB/MCPE showed more effective in 

the oxidation and could be applied for the 

determination of HQ and water sample. 
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Fig. 13: Illustrative electrooxidation of HQ. 

 

Majidi et al. [50] used room temperature 

ionic liquid [Amim][BF4] to modify surface of 

carbon-ceramic electrode for simultaneous 

electrochemical determination of dopamine (DA) and 

acetaminophen (AP) (Fig. 14). The results showed 

that the prepared electrode could be successfully 

applied in the determination of DA and AP with 

satisfactory results. Similarly, Raoof et al. [51] also 

conducted the direct electro-oxidation of 

acetaminophen by using carbon paste electrode 

modified with ZnO nanoparticle (ZnO/NPs) and 

[Bmim]Cl with satisfactory results. Serr et al. [52] 

reported the preparation of magnetic CoPt nanorods 

depending on IL-in-water, bicontinuous (β) or 

water-in-IL (Fig. 15). The prepared nanorods showed 

a much enhanced electrocatalytic activity for 

methanol oxidation in comparison with compact Pt 

nanorods (up to 12 times) or Pt/C. Liu et al. [53] 

prepare the AuPd nanoparticles on graphene and then 

use as a catalyst in electro-oxidation of ethanol, 

which showed much higher catalytic activity 

compared with a Pd/C catalyst (Fig. 16). 
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Fig. 14: Electrochemical determination of DA and AP in ILs. 
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Fig. 15: Catalytic electro-oxidation of methanol. 

 

 

Fig. 16: Catalytic electro-oxidation of ethanol with AuPd NPs. 

 

Maleha et al. [54] reported the fabrication of 

NiO/nanoparticles modified carbon IL paste electrode 

(IL/NiO/NPs/CPE) and investigated the 

electrochemical behavior of NADH (Fig. 17). They 

found that the electro-oxidation signal was increased 

to about four times on IL/NiO/NPs/CPE electrode 

compared to CPE. This method was highly selective, 

sensitive with a fast response for NADH analysis. 

Ensafi et al. [55] conducted the determination of 

morphine and codeine with Pt nanoparticles 

supported on silicon modified IL carbon paste 

electrode (Fig. 18), and they fuond that Pt/PSi 

nanocomposite in carbon IL electrode (CILE) had 

synergetic effect on the oxidation of morphine and 

codeine. The features of the modified IL carbon 

electrode include: high sensitivity, good 

reproducibility, low detection limit, and high 

synergetic activity. 
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Fig. 17: Electrochemical behavior of NADH in IL. 
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Fig. 18: Electroxoidation mechanism of morphine and codeine. 

 

Shojaei et al. [56] developed the carbon 

paste electrode modified in situ with ZnFe2O4 

magnetic nanoparticles (ZnFe2O4/MNPs) and IL 

[1,3-Pr2im]Br for the determination of 5-fluorouracile 

(5-FU) (Fig. 19). They found that the electrode 

ZnFe2O4/MNPs/IL/CPE had some advantages such as 

high sensitivity, good  detection limits and excellent 

reproducibility. Kaur et al. [57] synthesized the ILs 

including [Hmim][Cl], [Bmim][Cl], 

[C16H33N(CH3)3][Br], [C18H37N(CH3)3][Cl] coated 

Fe3O4 based inorganic-organic hybrid materials for 

the simultaneous determination of DNA bases (Fig. 

20). The results demonstrated that Fe3O4/MIM 

modified electrode had higher catalytic activity 

toward the electro-oxidation of all DNA bases with 

good stability, sensitivity, selectivity and antifouling 

ability.  
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Fig. 19: Electro-oxidation of 5-FU with ZnFe2O4/MNPs/IL/CPE. 

 

 

 

Fig. 20: Determination of DNA bases using ILs 

coated electrode. 

 

Sun et al. [58] proposed a electrochemical 

method for the determination of 

adenosine-5-triphosphate (ATP) based on a chitosan 

(CTS) and graphene (GR) composite film modified 

carbon IL electrode (CTS–GR/CILE) (Fig. 21). They 

found that the prepared electrode had excellent 

reproducibility, stability, anti-interference ability. 
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Fig. 21: The electrochemical oxidation mechanism 

of ATP. 

 

Zhan et al. [59] used the synthesized 

electrochemical sensor based on ILs-LDH modified 

glass carbon electrode (GCE) for bisphenol A (BPA) 

determination (Fig. 22). The results showed that 

ILs-LDH/GCE had excellent electro-oxidation ability 

toward BPA with an acceptable reproducibility, good 

stability and high sensitivity. Shan et al. [60] carried 

on the electrochemical determination of NADH and 

ethanol based on IL-functionalized graphene. The 

resulting biosensor showed rapid, stable, and highly 

sensitive amperometric response to NADH and 

ethanol with a low detection limit (Fig. 23). 
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Fig. 22: Electrochemical behaviors of BPA. 

 

 

 

Fig. 23: Schematic representation for the bioelectro-catalytic sensing of ethanol. 

 

Berton et al. [61] investigated the potential 

of silicon nanowires (SiNWs) as electrode material 

for large-voltage window micro-supercapacitors (Fig. 

24). An ionic liquid electrolyte (EMI-TFSI) was used 

in order to prevent the etching of silicon electrodes. 

Electrochemical oxidation of silicon surface at high 

anodic potentials led to an extended operating voltage 

range (up to 4 V) and slightly enhanced specific 

capacitance of silicon electrodes. The research 

demonstrated the ability of SiNW electrodes to 

operate at high frequency and obtained a specific 

power of 472 μWcm−2. 

 

Valentini et al. [62] synthesized the new 

nano-gels based on graphene and ILs, and used for 

the assembly of chemically modified carbon paste 

electrodes (Fig. 25). They found that the alkaloid 

molecule could be successfully detected with high 

sensitivity, excellent reproducibility and a fast 

response time. Ardakani et al. [63] used carbon-paste 

electrode modified with DBC, IL and carbon 

nanotube for the determination of hydrazine (Fig. 26). 

They found that the DBC-IL/CNPE over CP 

electrode had some advantages such as high 

conductivity, high sensitivity and selectivity, 

reproducibility and fast electron transfer.  
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Fig. 24: SEM images of 20 μ-SiNW electrode after repeated CV cycling in EMI-TFSI. 
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Fig. 25: Electrochemical oxidation of caffeic acid in ILs. 

 

Ardakani et al. [64] reported the synthesis 

and application of DDF-CNT-TiO /IL/GC electrode 

as high sensitive sensors for simultaneous 

determination of isoproterenol (IP) and serotonin 

(5-HT) using glassy carbon electrode (Fig .27). They 

found that the electrocatalytic activity of the modified 

electrode could be dramatically enhanced in the 

oxidation compared to the DDF-CNT-TiO electrode. 

As a result, dramatically enhanced catalytic activity 

for the electrooxidation of IP and 5-HT was achieved. 

Serrà et al. [65] synthesized CoNi-Pt Core@Shell 

stable mesoporous nanorods with very high active 

surface for methanol electro-oxidation (Fig. 28). The 

results showed that mesoporous CoNi@Pt nanorods 

demonstrated much better performance for methanol 

oxidation, which possessed good stability and 

significant electrocatalytic stability under the reaction 

conditions. Kaur et al. [66] synthesized ILs coated 

nanocrystalline zeolite based inorganic-organic 

hybrid materials modified electrodes for the 

simultaneous determination of all four DNA bases 

(Fig. 29). They found that the analytical performance 

of the proposed method demonstrated in the 

simultaneous determination of all four DNA bases in 

calf thymus DNA sample. 
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Fig. 26: Electrocatalytic reaction of hydrazine with DBC IL/CNPE. 
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Fig. 27: Electrocatalytic oxidaiton of 5-HT with DDF-CNT-TiO2/IL/GC electrode. 
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Fig. 28: Methanol electro-oxidation using eight types of nanorods. 

 

 

 

Fig. 29: Determination of DNA bases using ILs 

coated Nano-ZSM-5. 

 

Tran et al. [67] synthesized PtNPs whose 

size and shape were controlled by plasma reduction 

time in IL under atmospheric pressure plasma (Fig. 

30). They found that the PtNPs could be use as 

excellent electrochemical catalysts for the methanol 

oxidation, the PtNPs with a 10 min plasma reduction 

time showed better catalytic performance in the 

forward sweep and lower catalytic performance in the 

backward sweep than the long reduction time. Ni et 

al. [68] prepared N-doped mesoporous 

carbon-supported CoO@Co nanoparticles in 

situ using IL [Bmim]2[CoCl4] as the precursor with 

silica as the hard template (Fig. 31). They found the 

catalyst showed superior activity for oxygen 

evolution reaction (OER) manifested in its lower 

charge potential. The features of the modified 

CoO@Co nanoparticles include: coulombic 

efficiency, rate capability, cycling stability (55 

cycles), and high catalytic activity. 

 

Our group developed the synthesis of 

lactones and esters involving the application of an 

molecular oxygen-based electro-catalytic oxidation 

system and ionic liquid [bmim][OTf] as electrolyte 

[69]. The reaction between various ketones with 

molecular oxygen proceeds in a three-electrode cell 

under constant current conditions in [bmim][OTf] to 

give the corresponding esters and lactones in good to 

high isolated yield (Fig. 32). Compared with the 

previous catalytic systems, the present catalytic 

system have several attractive features such as good 

to excellent yields, high catalytic activity and 

selectivity, environmentally benign and safe. Zahran 
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et al. [70] reported the simple synthesis of crystalline 

α-Mn2O3 and calcium-incorporated manganese 

oxide (CaMn-oxide) thin film composite catalyst 

electrodes on a fluorine-doped tin oxide (FTO) 

electrode (FTO/EMI α-Mn2O3 and FTO/EMI 

CaMn-oxide) in ionic liquid [Emim]OTf (Fig. 33). 

They found that the electrocatalysts could be use as 

excellent electrochemical catalysts for the water 

oxidation at a very low energy cost 

 

 

Fig. 30: Electrochemical oxidation of methanol 

using PtNPs. 

 

Electrochemical reduction  

 

Electrochemical reduction technology has also 

received major attention in recent years due to its 

many advantages over other reaction processes. Li et 

al. [71] reported a method for electrochemical 

determination of iron based on the ionic 

liquid-reduced graphene oxide (IL-rGO) supported 

gold nanodendrites (AuNDs) (Fig. 34). The 

IL-rGO/AuNDs/Nafion modified electrode showed 

good responses for iron ions. They found that the 

modified electrode had a good anti-interference 

ability and showed a remarkable increase of the 

catalytic activity in the determination of iron in 

coastal waters. 

 

 

Fig. 31: Illustrative prepared CoO@Co 

nanoparticles for oxygen evolution 

reaction. 

 

Zhou et al. [72] examined the 

electrochemical reduction of CO2 using a 

Ag-modified Cu catalyst cathode in a series of mixed 

ILs in the presence or absence of CoCl2 (Fig. 35). 

The results showed that the Ag-modified Cu electrode 

in [Emim]BF4+[Bmim]NO3 with CoCl2 exhibited 

excellent synergy for the electrochemical reduction of 

CO2 to CO with a stable area specific activity, and the 

selectivity of CO was 98%.  

 

 

 

 

Fig. 32: Baeyer–Villiger electro-oxidation of ketones. 
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Fig. 33: Low-cost and energy-efficient electrocatalytic water oxidation. 
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Fig. 34: Schematic illustration of the stepwise self-assembly procedure. 
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Fig. 35: Illustrative synthesis route of different ionic liquids. 

 

Zhu et al. [73] reported selective 

electrocatalytic reduction of carbon dioxide to carbon 

monoxide on gold nanoparticles (NPs) (Fig. 36). 

Among monodisperse 4, 6, 8, and 10 nm NPs tested, 

the 8 nm Au NPs showed the maximum Faradaic 

efficiency (FE) (up to 90% at −0.67 V vs reversible 

hydrogen electrode, RHE). This study provides a new 

and highly efficient catalytic system for elective 

electrocatalytic reduction of CO2 to CO. 

 

Sun et al. [74] fabricated the 
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electrochemical sensor denoted as Nafion/ Mb/ NiO/ 

GR/CILE. The direct electron transfer of Mb was 

realized and promoted due to the presence of the 

NiO/GR nanocomposite on the electrode (Fig. 37). 

The Mb modified electrode showed an excellent 

catalytic activity towards the electroreduction of 

different substrates including trichloroacetic acid and 

H2O2. Besides, the Mb biosensor based on 

NiO/GR/CILE was constructed with good stability 

and reproducibility. Carlesi et al. [75] developed a 

method of carbon dioxide-to-methanol via direct 

electrochemical conversion mediated by IL 

[pamin]+[br]−. The results showed that this procedure 

had good absorption capacity, high ionic conductivity, 

high chemical–electrochemical stability and 

enhanced the ability of electrochemical reduction of 

absorbed CO2 (Fig. 38). 

H+

CO2

corner
edge

Ionic Liquid

CO

H2O

 

Fig. 36: Electrocatalytic reduction of CO2 to CO on NPs. 

 

 

 

Fig. 37: Illustrative fabrication procedure of Nafion/Mb/NiO/GR/CILE. 
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Fig. 38: Electrochemical reduction of CO2 to methanol in [pamin][br]. 

 

Zhan et al. [76] developed a novel 

electrochemical biosensor by the immobilization  of 

Hb in AFIL–LDH composite film through 

coprecipitation technique (Fig. 39). The  results 

showed that this modified bioelectrode displayed a 

good electrocatalytic activity toward the 

trichloroacetic acid (TCA) reduction with a larger 

linear range and a lower detection limit. Compared 

with the previous electrodes, the present ADIL-LDH 

nanocomposite film have several attractive features 

such as high conductivity, favorable 

microenvironment, environmentally benign and good 

biocompatibility. Zhou and coworkers [77] examined 

the electrochemical reduction of CO2 in a series of 

aqueous solutions of ILs on metal (silver (Ag), 

copper, platinum and gold) catalyst cathode (Fig. 40). 

The tests revealed that the chloride containing IL 

could be the most effective candidate for reduction of 

CO2 to CO. The results showed that Ag cathode in 

[Bmim]Cl with 20wt.% water had excellent synergy 

in electrochemical reduction of CO2 to CO with high 

selectivity (>99%) and efficiency, and with stable 

area specific activity (ca.2.4 mA·cm−2). 
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HbFe(Ⅲ) + e HbFe(Ⅱ)

2 HbFe(Ⅱ) + Cl3CCOOH + H+
2 HbFe(Ⅲ) + Cl2CHCOOH + Cl-

HbFe(Ⅱ) + e HbFe(Ⅰ)

2 HbFe(Ⅰ) + Cl2CHCOOH + H+ 2 HbFe(Ⅱ) + ClCH2COOH + Cl-

2 HbFe(Ⅱ) + CH3COOH + Cl-2 HbFe(Ⅰ) + ClCH2COOH + H+

（1）

(2)

(3)

(4)

(5)
 

Fig. 39: Electrocatalytic reduction process of TCA. 

 

 

 

Fig. 40: Electrocatalytic reduction of CO2 to CO in 

ILs. 

 

Bouden et al. [78] investigated the 

electrochemical immobilization of redox active 

molecule based IL onto glassy carbon electrode (Fig. 

41). They found that the  electrochemical reduction 

of [NO2PhEImMFc][TFSI] in acidic media 

containing sodium nitrite could lead to the in situ 

formation of the corresponding diazonium, in the 

vicinity of the electrode, and subsequently the 

grafting of redox based IL onto the electrode surface. 

The features of the [NO2PhEImMFc][TFSI] electrode 

include: high sensitivity, good reproducibility, 

electrochemical reversible wettability, and high 

activity. Rama et al. [79] studied the electrochemical 

behavior of Eu(III) in [C6mim]NTf2, in the presence 

and absence of TBP and DHOA (Fig. 42). The cyclic 

voltammogram of Eu(III) in C6mimNTf2 exhibited a 

prominent quasi-reversible reduction wave, 

culminating in a peak at−0.84 V (Vs Fc/Fc+) was due 

to the reduction of Eu(III) to Eu(II). The ionic liquid 

[C6mim]NTf2 based-electrochemical system shown 

excellent stability and catalytic efficiency. 
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Fig. 41: Electrochemical reduction of 

[NO2PhEImMFc][TFSI]. 
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Fig. 42: Structure of the extractants and IL. 

 

Yu et al. [80] reported ther synthesis of B 

and N co-doped graphene (B,N-G) samples via 

chemically grafting ionic liquid (IL), followed by 

thermal annealing (Fig. 43). The workers found that 

chemically grafting via IL is an efficient strategy for 

inhibiting and avoiding the agglomeration and 

restacking of graphene oxide (GO) sheets to a great 

degree in comparison to that of physically mixed IL 

and GO, further leading to efficient doping. The 

B,N-G-1200 annealed at 1200 °C derived from 

IL-grafted GO as CE has demonstrated the best 

electrochemical performance for triiodide reduction, 

yielding a power conversion efficiency of 8.08%. The 

synergetic effects of co-doped B and N, which is 

superior to 6.34% of Pt CE. Berenguer et al. [81] 

explored the electrochemical behavior of screen 

printed graphite electrodes (SPGEs) in [C6mim][PF6] 

by studying electrochemical parameters of Fc, 

BQ,  AQ,  TC and  BZ-3 (Fig. 44). Their reductive 

cyclovoltammograms provided valuable information 

and comparison of the electrochemical reduction of 

the C O functional group in model molecules of 

different size, solubility and π-aryl aromaticity.

 

 

 

 

Fig. 43: Illustration of synthesis process (a) and catalytic mechanism (b) for chemically grafting GO to 

B,N-G. 
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Wang et al. [82] investigated the direct 

electrochemistry of cytochrome c(cyt-c) entrapped in 

agarose hydrogel on Au, EPPGE and GC in two ILs 

(Fig. 45). The results showed that a good 

quasi-reversible redox behavior of cyt-c could be 

found after adding DMF in agarose-cyt-c film, 

electrochemical performance of cyt-c is the best 

when the water content is 5.2% and 5.8% for 

[Bmim][Br] and [Bmim][BF4] respectively. 

Compared with the previous systems, the present 

electrocatalytic system has some attractive features 

such as high conductivity, excellent electro-catalytic 

activity green and high reaction rate. Wang et al. [83] 

prepared the multiwalled carbon nanotube 

(MWCNT)/IL/gold nanoparticle hybrid materials by 

a chemical route that involved functionalization of 

MWCNT with ILs followed by deposition of Au (Fig. 

46). They found the hybrid material had good 

catalytic behavior toward oxygen electroreduction, 

relative to glassy carbon electrode. The results 

showed that the ionic liquids modified MWCNT with 

Au could play a key role in increasing the 

electrocatalytic activity of MWCNT. Chen et al. [84] 

investigated the electrochemical reduction of carbon 

dioxide (CO2) to carbon monoxide (CO) with 

propylene carbonate (PC)/Bu4NClO4 in ionic liquid 

[Bmim][Cl] (Fig. 47). The results showed that a good 

electrochemical performance of [Bmim][Cl] could be 

found for CO2 reduction.

 

 

 

Fig. 44: Illustrative electrochemical behavior ofSPGEs in [C6mim][PF6]. 

 

 

Fig.45: Electro-reduction of trichloroacetic acid and t-BuOOH in ILs. 
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Fig. 46: Oxygen electro-reduction using 

MWCNT/IL/Au hybrids in IL. 

 

 

 

Fig. 47: Electrochemical reduction of CO2 to CO in 

propylene carbonate/ tetrabutylammonium 

perchlorate. 

 

Conclusion 

 

In summary, various ionic liquids having 

highly promising future prospects in the field of 

electrochemistry have been outlined in this review. 

Many of their applications in fields of oxidation and 

reduction possess great electrochemical importance. 

It is to be expected that in future the scope and 

diversity of electrochemical applications in ionic 

liquids will be further increased, the possibilities of 

ionic liquids to reduce environmental pollution and to 

make better use of synthetic building blocks will be 

expanded. The toxic electrolytes that has been often 

used in classical electrochemistry will be more and 

more replaced by ionic liquids. Compared with the 

traditional electrochemical systems, the summarized 

present electrochemical oxidation and reduction 

ILs-based systems have several attractive features 

such as green, high catalytic activity, 

environmentally benign and safe. This review 

provides a new insight into design and application of 

sustainable and efficient electrochemical oxidation 

and reduction systems via the combination of 

electrochemistry and electrocatalytic activities of 

ionic liquids. Moreover, we do believe that ionic 

liquids with selectively functionalized anions and 

cations will greatly broaden the future scopes and 

applications in different fields of electrochemical 

science. 
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