One-Pot Fabrication of K-Doped g-C3N4/SiO2 Composite with Enhanced Photocatalytic Activity for Degradation of Tetracycline

Min-keng He, Jin Zhang, Fang-yan Chen*, Ke-ke Shu, Yu-bin Tang**

1School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China.

(Received on 10th May 2020, accepted in revised form 26th November 2020)

Summary: K-doped g-C3N4/SiO2 composite (SiO2/K-CN) was synthesized by a facile thermal polymerization with potassium chloride, melamine and nano-silica as raw materials. The as-prepared SiO2/K-CN was characterized by various measures. The photocatalytic activity of SiO2/K-CN was tested via the photocatalytic degradation of tetracycline under visible-light irradiation. The results showed that the specific surface area of SiO2/K-CN catalyst was 28.16 m2/g, which is larger than that of pristine K-doped g-C3N4. Both K-doping and silica-combination can reduce the recombination rate of photo-generated electrons-holes pairs and broaden the region of visible light harvesting. Compared with the pristine K-doped g-C3N4 and composite SiO2/g-C3N4, SiO2/K-CN exhibits distinctly higher photocatalytic activity for degradation of tetracycline. The enhanced photocatalytic performance of SiO2/K-CN is attributed to the increased specific surface area and the synergistic effect of K-doping and silica-combination in both accelerating separation of charged carriers and improving visible light absorption. During photocatalytic degradation of tetracycline, superoxide radicals play the most important role, followed by holes. SiO2/K-CN complex has excellent stability and shows promising application in photocatalytic degradation of organic contaminants in water.

Keywords: Graphitic carbon nitride, K-doping, Silica, Composite, Photocatalyst, Tetracycline.

Introduction

Photocatalytic degradation of organic pollutants in water is one of the important research hot spots in field of water treatment owing to its advantages of low energy consumption, low cost, no secondary pollution and soon. In the past decades, various kinds of semiconductors, especially the semiconductors with response to visible-light have been investigated as photocatalysts for degradation of organic pollutants[1-7]. Of all the photocatalysts, polymer semiconductor graphitic carbon nitride (g-C3N4) has attracted lots of attention in water splitting, degradation of organic contaminant and reduction of carbon dioxide due to absorption of visible-light, highly chemical stability and the distinct redox capability of the photo-produced holes and electrons[8-11]. However, Graphitic carbon nitride generally shows some shortcomings, such as limited absorption region to visible-light, low specific surface area and high recombination rate of photo-generated carries[12-14]. Thus, various kinds of modification strategy, including element doping, morphology control and combining with other materials to construct composite catalysts have been explored to overcome above-mentioned drawbacks and resultantly optimize the photocatalytic ability of g-C3N4[15-17]. Element doping has been proven to be an effective modification method. Usually, incorporation of the non-metal elements such as I, N, S, O, F, C, B and P into framework of g-C3N4 have been demonstrated to regulate energy band structure and extend absorption region of visible-light, resulting in higher photocatalytic activity [18-23]. The metals have been doped into g-C3N4 to accelerating the migration and separation of photo-induced charges for improving photocatalytic performance [24, 25]. Especially, K has been considered as desired dopant into the structure of g-C3N4 [26, 27]. For instance, Xiong et al have confirmed that K-doped g-C3N4 exhibits remarkably enhanced photocatalytic activity for NO removal, which was far superior to Na-doped g-C3N4 [28]. Composite structure could improve photocatalytic activity via adjusting bands gap and inhibiting recombination of photo-induced charges. Generally, some metallic oxide semiconductors, such as TiO2, ZnO and Fe2O3 have been employed to combine with g-C3N4 as to improving the photocatalytic activity [29-32]. Moreover, silica, as an insulator, has also been used to combine with g-C3N4 for enhancing photocatalytic performance because the coexistence of silica not only promote separation of...
photo-induced electron-hole pairs but also bring about increase in specific surface area of C$_3$N$_4$\[33-35\].

Given that both element-doping and composite construct are all effective strategies for improving the photocatalytic performance of g-C_3N_4, it can be inferred that coupling element-doping and composite construct would further enhance the photocatalytic activity of g-C_3N_4. Herein, we report a g-C_3N_4 based composite with simultaneous K-doping and combining with SiO$_2$. The photocatalytic performance of K-doped g-C_3N_4/SiO$_2$ was evaluated for degradation of tetracycline. And the synergistic effect of K-doping and combining with silica on the photocatalytic activity of g-C_3N_4 was explored.

Experimental

Chemicals

Melamine, potassium chloride, tetracycline hydrochloride, L(+)-ascorbic acid, isopropanol, potassium iodide, and ground to obtain composite K-doped g-C_3N_4/SiO$_2$ labeled as X-SiO$_2$/K-CN (X represents the mass ratio of the mixture of potassium chloride and melamine to nano-silica, X=8, 10, 12).

Preparation of K-doped g-C_3N_4/SiO$_2$(SiO$_2$/K-CN)

The mixture of potassium chloride and melamine in the mass ratio of 1:20 and a given amount of nano-silica (the mass ratio of the mixture of potassium chloride and melamine to nano-silica is 8, 10 and 12) were mixed in a crucible and dried at 60 °C. The crucible was put into a muffle furnace, heated to 520 °C at a heating rate of 15 °C/min, held for 4 h. Then the product was cooled naturally to room temperature and ground to obtain composite K-doped g-C_3N_4/SiO$_2$, labeled as X-SiO$_2$/K-CN (X represents the mass ratio of the mixture of potassium chloride and melamine to nano-silica, X=8, 10, 12).

Preparation of K-doped g-C_3N_4(K-CN)

A mixture of potassium chloride and melamine in the mass ratio of 1:20 was dried in at 60°C. Then the mixed solid was placed into a muffle furnace, heated to 520 °C at a heating rate of 15 °C/min, held for 4 h. The product was cooled naturally to room temperature and ground to obtain doped g-C_3N_4, labeled as K-CN.

Preparation of g-C_3N_4/SiO$_2$ (SiO$_2$/CN)

Nano-silica and melamine were mixed at the mass ratio of 1:10 in a crucible and dried at 60°C. Then, mixed solids were placed into a muffle furnace, heated to 520 °C at a heating rate of 15 °C/min, held for 4 h. The product was cooled naturally to room temperature and ground. The composite g-C_3N_4/SiO$_2$ sample is obtained and marked as SiO$_2$/CN.

Characterization of catalyst

The crystal phase of the samples was analyzed by XRD patterns obtained on D8 advantage X-ray diffractometer (Bruker, Germany) with Cu-K$_\alpha$ radiation source (λ=1.5406 Å) at 40Kv, 40mA The morphology of the samples was characterized by S-4800 field emission scanning electron microscope (Hitachi, Japan) at operating voltage of 15kV. The Fourier transformed infrared (FT-IR) spectrum of as-prepared catalysts was recorded on a NEXUS670 Fourier transform infrared spectrometer (Nicolet, US) at air atmosphere and scanning range of 350-4000cm$^{-1}$. The elemental composition and chemical state of the obtained products were measured by ESCALAB250i X-ray photoelectron spectroscopy (XPS) (Thermo Fisher Scientific Inc., USA). The specific surface area, pore size and pore volume of the samples were determined by N$_2$ adsorption-desorption isothermal obtained on an Autosorb-1-c sorption analyzer (Quantachrome, USA). UV-vis diffuse reflectance spectra were collected on a UV-2550 UV-vis spectrophotometer (Shimadzu, Japan) with BaSO$_4$ as reflectance standard. The photoluminescence spectra of the catalysts were observed on a Fluorescence spectrometer (Hitachi, Japan) at the excitation wavelength of 385 nm. The transient photocurrent response was carried out on the CHI660D electrochemical workstation (Chenhua Instrument, China) with Na$_2$SO$_4$ solution of 0.2mol/L as electrolyte, 300W arc beam(λ>420nm) as light source.

Photocatalytic degradation

Tetracycline was chosen as model pollutant to evaluate the photocatalytic activity of the as-prepared catalysts. 50mg photocatalysts were dispersed in aqueous solution of the tetracycline hydrochloride (100mL, 10mg/L) and stirred in darkness for 60min to achieve adsorption-desorption equilibrium. Then the suspension was exposed to a 300W xenon lamp with a 420 nm cut-off filter. At a given intervals, 4.5 mL of solution was sampled and centrifuged to separate the photocatalysts. The concentration of tetracycline in supernatant was determined according to the
Results and discussion

XRD spectra

The XRD spectra of K-CN, X-SiO2/K-CN (X=8, 10, 12) and SiO2/CN are given in Fig. 1. As shown in Fig. 1, the diffraction peaks at 12.8° and 27.4° are the characteristic peaks of (100) and (002) crystal plane of the g-C3N4, belonging to the repeating of in-plane N-bridged tri-s-triazine units and the interlayer stacking of conjugatedgraphite-like segments, respectively[36,37]. The five samples all show similar diffraction peaks at 12.8° and 27.4°, indicating that both K-doping and combining with SiO2 does not change the crystalline phase of g-C3N4.

FT-IR spectra

Fig. 2 is the infrared spectra of the as-prepared photocatalysts. As given in Fig. 2, K-CN, SiO2/CN and 10-SiO2/K-CN all exhibit the characteristic peaks of g-C3N4 at 794cm⁻¹, 1414cm⁻¹, 1562cm⁻¹, 1247cm⁻¹, 1331cm⁻¹ and 3000-3500cm⁻¹. Among these typical peaks, the sharp peak at 794cm⁻¹ is attributed to out-of-plane bending vibration of triazinering of g-C3N4. The adsorption band at 1247cm⁻¹ and 1331cm⁻¹ are assigned to the stretching vibration of C-N group, and the peak located at 1414cm⁻¹ and 1562cm⁻¹ is due to the stretching vibration of C=N[38]. The broad band at 3000-3300 cm⁻¹ perhaps belongs to the terminal N-H stretching vibration of g-C3N4. The absorption peak at 467.4cm⁻¹ found in the infrared spectra of 10-SiO2/K-CN and SiO2/CN is assigned to the bending vibration of O-Si-O, which proves the existence of SiO2 in 10-SiO2/K-CN and SiO2/CN. Additionally, a new absorption peak at 2160cm⁻¹ is observed in the infrared spectra of 10-SiO2/K-CN and K-CN, which corresponds to the stretching vibration of N-K bond[39], indicating K element is successfully inserted into the skeleton of g-C3N4.

X-ray photoelectron spectroscopy (XPS)

Fig. 3 shows the XPS spectrum of 10-SiO2/CN. As can be seen from Fig. 3, O1s, C 1s, N 1s and Si 2P are observed in the survey spectrum (Fig. 3(a)), suggesting that sample 10-SiO2/K-CN contains O, C, N, Si and K elements. In the high resolution spectrum of C 1s (Fig. 3(b)), C 1s spectrum can be deconvoluted into two peaks at 288.17eV and 284.7eV. Of them, the former corresponds to sp2 hybridized carbon atom from the triazine ring of g-C3N4[40], and the latter is perhaps due to surface amorphous carbon or sp2 C-C of the catalyst [28, 41]. In the high resolution spectrum of N 1s (Fig. 3(c)), the binding energy at 398.6eV, 399.5eV and 400.5eV are attributed to C-N=C, tertiary nitrogen N-(C)3 and C-N-H, respectively, while the peaks at 404.4eV is due to positive charge localization or charging effects about the π-excitations in hetercyles[37, 39]. Fig. 3(d) shows the high resolution spectrum of K 2p, and the binding energy of 293.04eV and 295.08eV are ascribed to K2p3/2 and K2p1/2, which is similar to that of K-N in potassium azide (KNN) [39], confirming successful K-doping into framework of g-C3N4 and the formation of N-K bond. In Fig. 3(e), the high resolution spectrum of O 1s at 533.2eV corresponds to element oxygen from nano-SiO2. In Fig. 3(f), the peak at the binding energy of 104.06eV is indexed to Si4+ from the nano-silica[35].

Fig. 1: XRD patterns of K-CN, SiO2/CN and X-SiO2/K-CN (X=8, 10, 12).

Fig. 2: FT-IR spectra of K-CN, SiO2/CN and X-SiO2/K-CN (X=8, 10, 12),
Fig. 3: XPS spectra of 10-SiO$_2$/K-CN.
Fig. 4 indicates the SEM images of 10-SiO$_2$/K-CN and K-CN. As shown in Fig. 4, both K-CN and 10-SiO$_2$/K-CN are blocky. However, 10-SiO$_2$/K-CN appears more rough and loose surface than the separate K-doped g-C$_3$N$_4$, which will be further confirmed by the specific area shown in Table 1.

![SEM images of K-CN and 10-SiO$_2$/K-CN](image)

Fig. 4: SEM of K-CN (a) and 10-SiO$_2$/K-CN (b).

Table 1: Specific surface area and pore volume of the catalysts.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Specific surface Area (cm2/g)</th>
<th>Pore volume (cm3/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-SiO$_2$/K-CN</td>
<td>28.156</td>
<td>0.0950</td>
</tr>
<tr>
<td>10-SiO$_2$/CN</td>
<td>46.389</td>
<td>0.1595</td>
</tr>
<tr>
<td>K-CN</td>
<td>11.730</td>
<td>0.0329</td>
</tr>
</tbody>
</table>

N_2 adsorption-desorption

Fig. 5 is the nitrogen adsorption-desorption isotherm and pore size distribution of K-CN and 10-SiO$_2$/K-CN. On the basis of BET adsorption-desorption model, the specific surface area and pore volume of the samples were calculated and listed in Table 1. As shown in Table 1, 10-SiO$_2$/K-CN exhibits larger porosity and specific surface areas than K-CN. It is suggested that combination of SiO$_2$ can contribute to improve specific surface of the K-doped g-C$_3$N$_4$. Nevertheless, it is noted that the specific surface areas and porosity of 10-SiO$_2$/K-CN is smaller than SiO$_2$/CN, suggesting K-doping results in decrease in the specific surface areas of SiO$_2$/K-CN. It is perhaps because the K-doping enhance interaction and degree of polymerization between carbon nitride sheets and resultantly reduces the specific surface area [39].

![Nitrogen adsorption-desorption isotherm and pore size distribution](image)

Fig. 5: Nitrogen adsorption-desorption isotherm and pore size distribution.

UV-visible diffuse reflectance spectrum

Fig. 6(a) shows the UV-vis spectra of samples 10-SiO$_2$/K-CN, K-CN and SiO$_2$/CN. It can be seen from Fig. 6(a) that compared with K-CN, the visible-adsorption edge of composite 8-SiO$_2$/K-CN, 10-SiO$_2$/K-CN and 12-SiO$_2$/K-CN undergo evident red-shift. Furthermore, the red-shift increases with increased content of SiO$_2$ in composite SiO$_2$/K-CN, indicating that the existence of SiO$_2$ in composite SiO$_2$/K-CN can result in extensive visible-light adsorption of the composite. Similarly, compared with the composite SiO$_2$/CN, The UV-Vis spectra of SiO$_2$/K-CN also show obvious red-shift, suggesting that K-doping can broaden the region of visible light-harvesting and thus enhance the strength of visible-light adsorption of SiO$_2$/CN. Therefore, it can be concluded that K-doping and SiO$_2$ recombination
have synergistic effect on enhancing the absorption of visible-light of SiO$_2$/K-CN.

Additionally, the composite SiO$_2$/K-CN with K-doping own less band gap than non-doping composite SiO$_2$/CN. Comparison of band gap suggested that both K-doping and the SiO$_2$ combination narrow the band gap of SiO$_2$/K-CN.

Photoluminescence(PL) spectrum

To explore the recombination probability of photo-generated electron-hole pairs of the as-prepared catalysts, the photoluminescence performance test of K-CN, 10-SiO$_2$/K-CN and SiO$_2$/CN were conducted and presented in Fig. 7. As can be seen from Fig. 7, PL intensity of 10-SiO$_2$/K-CN is weaker than that of both K-CN and SiO$_2$/CN, indicating that 10-SiO$_2$/K-CN exhibits lower recombination rate of photo-induced electron-hole pairs, and K-doping and SiO$_2$ combination show a synergistic effect on inhibiting the recombination of photo-induced charges in SiO$_2$/K-CN. However, the PL intensity of 10-SiO$_2$/K-CN is significantly weaker than that of SiO$_2$/CN but slightly weaker than that of K-CN, suggesting that K-doping produced more marked effect on inhibiting the recombination of photo-generated charges compared with SiO$_2$ combination.

Fig. 6: UV-vis diffuse reflectance spectra (a) and the plots of $(a h v)^{1/2}$versus$h v$(b).

According to Tauc formula $a h v= A (h v-E_0)^{1/2}$, the band gaps of a semiconductor can be estimated by the intercept of the tangents to the plots of $(a h v)^{1/2}$versus$h v$;where A, a, $h v$, E_0 are a constant, the absorption coefficient, photo energy and the band gap, respectively[28]. Fig. 6(b) gives the plots of $(a h v)^{2}$ versus$h v$ for the as-synthesized photocatalysts. On the basis of Fig. 6(b), the band gap of K-CN, 8-SiO$_2$/K-CN, 10-SiO$_2$/K-CN, 12-SiO$_2$/K-CN and SiO$_2$/CN were obtained to be 2.56eV, 2.46eV, 2.40eV, 2.33eV and 2.61eV, respectively. Compared with K-CN, the band gap of SiO$_2$/K-CN is narrower and decrease with increasing the content of SiO$_2$ in composite SiO$_2$/K-CN. It is because nano silica possesses band defects due to its over-small size, which leads to a smaller band gap as it is combined with a semiconductor photocatalyst [42].
exhibits the highest photocurrent, indicating efficient separation of photo-induced charges in 10-SiO\textsubscript{2}/K-CN. This result is in accordance with PL result. Moreover, the fact that the photocurrent of 10- SiO\textsubscript{2}/K-CN is greater than that of both K-CN and SiO\textsubscript{2}/CN further confirm the synergistic effect of K-doping and silica-combination on expediting the separation and transfer of photo-induced charges in SiO\textsubscript{2}/K-CN. Because the new N-K bond formed between K+ and -NH\textsubscript{2} or -NH group in g-C\textsubscript{3}N\textsubscript{4} can link triazine rings together to expand the π-conjugate system of g-C\textsubscript{3}N\textsubscript{4} and thus reduce the adjacent layers of energy barrier\cite{39}. As a result, the migration of photo-produced electrons is promoted and then recombination of electrons and holes is inhibited. In addition, Nano-SiO\textsubscript{2} in SiO\textsubscript{2}/K-CN own impurity energy level due to the existence of defects \cite{33}, which makes the photo-generated electrons transfer from the conduction band of g-C\textsubscript{3}N\textsubscript{4} to the impurity energy level of SiO\textsubscript{2} and thus hinder the recombination of photo-generated electrons and holes.

![Fig. 8: Transient photocurrent response of K-CN, SiO\textsubscript{2}/CN and 10-SiO\textsubscript{2}/K-CN under visible-light irradiation.](image)

Photocatalytic performance

The photocatalytic activity of the prepared material was evaluated by photocatalytic degradation of Tetracycline hydrochloride (TC) under visible-light. Fig. 9(a) gives the degradation ratio of TC. As presented in Fig. 9(a), within 120 min, the degradation efficiencies of TC over SiO\textsubscript{2}/CN, K-CN, 8-SiO\textsubscript{2}/K-CN, 10-SiO\textsubscript{2}/K-CN and 12-SiO\textsubscript{2}/K-CN are 52.4\%, 57.9\%, 61.1\%, 68.6\% and 67.1\%, respectively. The visible-light-driven photocatalytic activity of X-SiO\textsubscript{2}/K-CN(X=8, 10, 12) is higher than that of K-CN and SiO\textsubscript{2}/CN, revealing the synergistic effect of K-doping and silica-combination on improving the activity of SiO\textsubscript{2}/K-CN. Of the X-SiO\textsubscript{2}/K-CN(X=8, 10, 12), 10-SiO\textsubscript{2}/K-CN exhibits the highest activity.

Generally, the photocatalytic degradation of organic pollutants follows apparent first-order kinetics equation: ln (C/C\textsubscript{0})=−kt, where, C\textsubscript{t} and C\textsubscript{0} are the concentration of RhB at t time and initial time, respectively. k is apparent reaction constant. Fig. 9 (b) gives plots of ln (C/C\textsubscript{0}) vs. t of the obtained photocatalysts. The values of k are obtained from the gradient of curve in Fig. 9(b) and listed in Table-2. As can be seen from Table-2 that x-SiO\textsubscript{2}/K-CN (X=8, 10, 12) exhibits significant higher rate constant for degradation of tetracycline than K-CN and SiO\textsubscript{2}/CN. Moreover, degradation rate constant of tetracycline over10-SiO\textsubscript{2}/K-CN is 1.54 and 1.39 times as high as that over K-CN and SiO\textsubscript{2}/CN, respectively. It is further confirmed that nano-silica and the K-doping show synergistic effect in enhancing the photocatalytic activity of X-SiO\textsubscript{2}/K-CN for degradation of tetracycline.

![Table-2: Kinetic constants and regression coefficients of degradation of tetracycline hydrochloride.](image)

<table>
<thead>
<tr>
<th>Samples</th>
<th>K(min-1)</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO\textsubscript{2}/CN</td>
<td>0.00603</td>
<td>0.9945</td>
</tr>
<tr>
<td>K-CN</td>
<td>0.00663</td>
<td>0.9899</td>
</tr>
<tr>
<td>8-SiO\textsubscript{2}/K-CN</td>
<td>0.00771</td>
<td>0.9878</td>
</tr>
<tr>
<td>10-SiO\textsubscript{2}/K-CN</td>
<td>0.00925</td>
<td>0.9163</td>
</tr>
<tr>
<td>12-SiO\textsubscript{2}/K-CN</td>
<td>0.00866</td>
<td>0.9836</td>
</tr>
</tbody>
</table>

Fig.9(c) shows the degradation of tetracycline as the 10-SiO\textsubscript{2}/K-CN was recycled for 4 times. It can be observed from Fig. 9(c) that the photocatalytic degradation efficiency of tetracycline over 10-SiO\textsubscript{2}/K-CN decreased a little from 66.1\% to 60.6\% after 10-SiO\textsubscript{2}/K-CN was reused for 4 cycles. It is suggested that 10-SiO\textsubscript{2}/K-CN own apparent stability, showing potential practical application.
Fig. 9: (a) Photocatalytic degradation of tetracycline under visible light, (b) Kinetic curve of degradation of tetracycline, (c) Recycling runs of X-SiO2/CN for degradation of tetracycline and (d) photocatalytic activity of 10-SiO2/K-CN for degradation in the presence of different radical scavenger.

Fig. 9(d) gives the degradation of tetracycline in the presence of L (+)-ascorbic acid, potassium iodide (KI) and isopropanol (IPA) which are used as scavenger for superoxide radicals(•O2−), holes (h+) and hydroxyl radicals(•OH), respectively. As shown in Fig. 9(d), the decrease in photocatalytic activity is most significant when L (+)-ascorbic acid was added in tetracycline solution. Addition of KI results in more decreased degradation rates of tetracycline than IPA. It is indicated that superoxide radicals are main active species for degradation of tetracycline, followed by holes, and hydroxyl radicals play a minor role in degradation of tetracycline.

Conclusion

The composite catalyst K-doped g-C3N4/SiO2(SiO2/K-CN) was successfully synthesized by facile thermal polymerization by using nano-silica, melamine and potassium chloride as raw materials. As the mass ratio of potassium chloride to melamine is 1:20 and the mass ratio of the mixture of potassium chloride and melamine to silica is 10:1, the as-prepared composite 10-SiO2/K-CN shows the highest photocatalytic activity. The specific surface area of 10-SiO2/K-CN is 28.16m2/g, which is higher than that of K-doped g-C3N4(12.58m2/g) and lower than that of g-C3N4/SiO2 (46.39m2/g), silica-combination play an important role in increasing the specific surface area of the composite catalyst. Both K-doping and addition of SiO2 can reduce the recombination rate of photo-generated electrons and holes. Compared with SiO2/CN and K-CN, SiO2/K-CN exhibits enhanced photocatalytic activity for degradation of tetracycline. Within 120 min, 68.6% of tetracycline can be degraded under visible-light irradiation. The superoxide radicals pay...
main role in degradation of tetracycline, followed by holes and hydroxyl radicals. The enhanced activity is attributed to the increased specific surface areas and the synergistic effect between K-doping and silica-combination in both promoting the separation of the photo-induced electron-hole pairs and enhancing visible-light absorption. In addition, SiO$_2$/K-CN shows high stability and reusability, implying potential practical application in decomposition of organic pollutants.

Acknowledgement

This work is supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province, China. (Grant Number: SJKY19_2658).

References

Min-keng He et al.,

Energy, 19, 446 (2016).

