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Summary Modelling the chemical system, especially for complex and higher dimensional problems, 
gives an easy way to handle the ongoing reaction process with respect to time. Here, we will 
consider some of the newly developed computational methods commonly used for model reductions 
in a chemical reaction. An effective (simple) method is planned to measure the low dimensional 
manifold, which reduces the higher dimensional system in such a way that it may not affect the 
precision of the whole mechanism. The phase flow of the solution trajectories near the equilibrium 
point is observed while the initial approximation is measured with the spectral quasi equilibrium 
manifold, which starts from the equilibrium point. To make it an invariant curve, the approximated 
curve is first refined a certain number of times using the method of invariant grids. The other way of 
getting the reduced data in the low dimensional manifold is possible through the intrinsic low 
dimensional manifold. Then, we compare these two invariant curves given by both the methods. 
Finally, the idea is extended to the higher dimensional manifold, where more number of progress 
variables will be added. 

 
Keywords: Chemical kinetics, Chemical equilibrium, Lyapunov function, Invariant manifolds, Model 
reduction. 
 
Introduction 
 

The mystery of chemistry could be 
understood if we know the details of the chemical 
mechanism. But the details of the mechanism 
involve a large number of chemical species c  
(microscopic point of view), which are difficult to 
measure in a few steps. Therefore, it is important 
to model the system on a macroscopic scale, such 
as the system must be defined by its position and 
velocity for each induced chemical (species) of the 
system. Also, in a thermodynamic system, it is 
necessary to know about the pressure and 
temperature, etc. Some studies suggest that in the 
case of thermodynamic equilibrium, it is observed 
that there is no change at the macroscopic level; 
however, some changes took place on the 
microscopic level. 
 

Now, if such variations occur at each 
stage of the ongoing process of the chemical 
mechanism (even before reaching its equilibrium 
state), it is important to know its relaxation time 
and behaviour of the induced species during the 
transition process in the final stage. 
 

Our aim is to design a kinetic model to 
derive the reaction mechanism, which remains 
vital for the whole mechanism. The acquired data 
from the new reduced system is then simulated in 
such a way that it may not affect the accuracy. For 

basic notation and representation, we follow these 
assumptions: 
 
Reaction Mechanism 
 

A single or a multiple steps reversible 
chemical reaction can be usually represented as:  
 

A B

i i

N N

i A i A
i i

c c       (1) 

 
Here, ,i i   ( 3 ) are the stoichiometric 

coefficients. Reactants and products involved in 
the chemical reactions are represented by 

iAc and 
their total numbers are represented by NA

, NB
.  n -

dimensional stoichiometries vector 
i  of the 

reaction (1) are defined as: 
 

ii i        (2) 
 

Stoichiometries vectors generate the 
stoichiometries matrices having dimensions 
( )N Nor c , Nor  that stands for the number of overall 
reactions while Nc

 represents the number of species 
(chemical) involved in the system. Similarly, the 
molecular matrix having dimension ( )N Nc e  shows 
the composition of the chemical substances, where 
Ne

 are the number of chemical elements.  

*To whom all correspondence should be addressed. 
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In the case of simultaneous or complex 
chemical reactions, it is better (both from an 
academic as well as a practical point of view) to 
reduce the system to its dimension. Thus, 
according to Gibbs rule, we can find the 
(minimum) number of key components Nkc

 
required to explain the chemical reactions, which 
is:  
 

kc c eN N N      (3) 
 

The rate of reaction at each elementary 
step is the difference between its forward and 
backward rate, i.e. .i iw w w    When the system 
moves towards equilibrium then w = 0 and we 
have i iw w   but it is important to mention here, 
it is the (forward and backward) rate of reaction 
that are equal while concentrations of reactants and 
products are not equal [1]. According to the law of 
mass action, the rate depends on concentration and 
rate coefficients 
 

1
,

A
i

i

N

i i A
i

w k c 



    
1

,
B

i

i

N

i i
i

Aw k c 



 
  

(4) 

 
i.e., ik  is the rate coefficient for a forward while ik   
is related to backward reactions and their ratio 

/i i eqk k k    represents equilibrium constants. 

As an intensive variable Ni
i Vc  ( 0V  Volume), the 

vector N
Vc   is a vector of concentration while 

i
Ni Ac  is an extensive variable. The kinetic 
equations for a system (without external flux) will 
become 
 

1
( ),

n

i
i i

dN V w c
dt




 
1

.
( ), ( ) ( ).

n

i
i iN VK c c cK w



 
 

 
In case of isothermal and isochoric 

process, an extra condition exists in the form of 
,T V = (constant). Therefore, the above system 

finally takes a form: 
 

1
( ) ( ),i

n

i
i

dcK c w c
dt




     (5) 

 
Now considering the law of conservation 

of atoms, which plays an important role in the 
reduction of the complex chemical system, are also 
taken into account in the form of linear constraints, 
i.e., 

   .Mc Cnt     (6) 
 
Quasi and Spectral Quasi Equilibrium Manifold 
 

The quasi equilibrium manifold (QEM) 
depends on two entities [2], Entropy and Slow 
variables. Entropy is basically a Lyapunov 
function and G  plays an important role for its 
stability while the convergence of the system 
obeys the 2nd law of thermodynamics [3, 4]. Slow 
variable means a differentiable function of a 
variable c  with an assumption of small fast-slow 
projection. 

 

1
[ln( )-1]. 

n
i

i eq
i i

cG c
c


   (7) 

 
Now, we define the QEM in term of 

conditions, i.e. 
 

  minG  , ( , )m c  ,     .Mc Cnt  (8) 
 

Here 
im  are n -dimensional vectors,   

values are the reduced description of the species in 
a situation and we are left with the N Nc e  degree of 
freedom. If 

im  is selected as the ith-left slowest 

eigenvector of the Jacobean ( )( ) | eqc
i

K cL c
c






 

corresponding to small absolute eigenvalues 
i
, 

the solution obtained from (8) is known as Spectral 
Quasi Equilibrium Manifold (SQEM) (for more 
details see [5-9]). 
 

Now, in the next step, we will project this 
initial solution onto the constructed slow manifold 
in order to split the motions into slow and fast. The 
operator 

TP (thermodynamic projector) projects the 
vector field at each point of the manifold in the 
tangent space to give the induced vector field 

( ),TP K c which defines the "slow and fast 
motions" duality [6]. Therefore, projector depends 
on two things: tangent space of the manifold   
and concentration pointc . Now the differential of a 
linear function G , and induced vector field are: 
 

( ) ( ( ), ). DG c G c c   
 

( ( )) 0, .TDG P K c c    
 

The projector 
TP  obeys the condition 

given above if the following condition is satisfied, 
i.e. 
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ker( ) ker( ( )),TP c cDG    
 

  is Gradient of the function, i.e. 
| ln( / ) |eq

i iG c c   and 2| / |i jH G c c     is the 
second derivative matrix of G . ker  is the null 
space of the operator. An entropy scalar product ,   
is defined as 1 1, ( , )p p p pHc c c c    , while ( , ) 
implies Euclidean scalar product.  
 
Manifold for Grid Construction 
 

By using the SQEM method, we will 
measure the one dimensional curve starting from 
any point pc (or equilibrium) that lies over it. We 

can measure the next point by adding a shift phc , 

1p p pc c hc    and 
1i

i

z

p ihc 


  (9) 

 
Thus, all the possible outcomes can be 

obtained p nc 
 in the same manner. i  is the 

unknown variable, which we have to find while   
is the basis of null space of the matrix M  having a 
dimension dim( - )N Nc ez  . The line  lies 
between 1pc 

and pc  having a parametric 

form 1pc t c   , whereas t is a vector of T  
(tangent space) spanning  and   is taken as a 
parameter. 

 

 
 
Fig. 1: The general idea of grid construction and 

its variation from one grid to the next grid 
point. 

Now, applying the method of SQEM; 
first, the constraints (linear) of QEM can be 

rewritten in the form: 
1...
q

m
E m

M

 
 
 
 
 
 
 

  

 
 
Here 

1... qm m  are the reduced variable vectors from 
single to higher dimensions. Then, the dimension 
of basis jt  in ker( )E  will be ( )z q  and the system 
will be: 
 

1
, ( , ( )), 1,..., 1

z

j i i j p
i

t t G c j z 


       

1
( , ) 0, 

z

i i
i

m  


  2 .phc ‖ ‖ ò  (10) 

 
 

The solution of the above system (10) 
delivers two real solutions at each grid point as 
shown in Fig. 1. In our case, we will start 
measuring from eqc  (equilibrium point) with the 
selection of slowest first variable vector 

1m  among 
the available q  vectors to solve the system (10). In 
this way, we obtain first initial SQEM given by 
grid nodes. This initially approximated curve is 
then refined in a node-by-node process to find out 
the invariant manifold by using any appropriate 
method like the method of the invariant grid 
(MIG) [10, 11]. After that, out of the remaining 

1q   available vectors, we take the second 
2m  and 

get some more combinations of nodes or in simple 
words, another SQEM curve passing through eqc . 
The second curve can also be refined through the 
same process to make it an invariant curve. 
Similarly, the idea is extendable to the qth  step in 
order to find out all the possible combinations of 
vectors. The same idea is used to construct the 
higher dimensional manifold and it is illustrated 
with an example in the next section. 
 
 
Experimental 
 

Here we consider some chemical 
reactions defined over a closed system [12]. The 
reaction mechanism involves a three-step 
reversible oxidation mechanism (

2B  as oxygen) 
with four chemical species, i.e.  

1 2 2 3 2 4 ,  ,  ,  A c B c AB c AB c    . 
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Fig. 2: Example of three step reversible reactions 

involves four chemical species. In the 
first step, A  reacts with 

2B  and it is 
transformed into AB . In the second step; AB  
reacts with 

2B  and produces 
2AB  while A  

also produces 
2AB  when it reacts with

2B . 
Here, 

ik  indicates the rate coefficients for 
the first, second and third reaction steps. 
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(11) 

 
The system shown above (11) delivers the 

stoichiometries vector and matrix S  w.r.t (2), while 
the molecular matrix M  is given by (6) in matrix 
form. 

 
2 2

2 1 2 0
0 1 2 2
1 1 0 1

A B AB A

S

B
  
 

   
   

2

2

1 0
0 2
1 1
1 2

A
B

M
AB
A

A

B

B
 

 
  

 
  

 (12) 

 
The involved species are mentioned 

above in S  while these species are in a row in 
M and elements are in its columns above. The 
relation between these matrices can be easily 
mentioned as SM ( ) 0or eN N 

. Whereas according 
to equation (3), we have 2kcN 

 for (11). 
 

Similarly, the system of kinetic equations 
can be solved by using the relation (5), i.e. 

 
- 2 - 2

3 1 1 3
- - 2 2 - 2

3 2 4 1 1 3
- 2 2 - 2

2 4 1 1 3
- 2 - 2

3

1 2 3 4 2 1
2

1 2 3 4 2 3 2 2 1
2

2 3 2 2 1

3 41 2 3 4 2 2 2

- - 2
- - -

( )

2

2 - 2-2 2
- 22 -

c
c c c

c

k c k c k c c k c
k c k c k c k c k c k c

K c
k c k c k c k c

k c k c k c c
c

c k c

 

  



 
 
 

  




 




(13) 

 
and its Jacobean ( )eqL c  can be measured as:  
 

- 0.240  -0.700   0.500    0.050
 -0.140  -0.470   0.230   0.060
   0.200   0.460  -0.540   0.020
   0.040   0.240   0.040  -0.0 0

(

7

)eqL c

 
 
 
 
 
   

(14) 

 
Now, in the case of SQEM, the choice of 

selecting the slowest vector will not be directly 
done from L  the way it was done in QEM [5]. 
Therefore, the first and second slowest left 
eigenvectors 1

slx , 
2
slx (

1,2m ) of the Jacobian matrix 

{ | }eq
i

c
j

KL
c





 will become: 

 
1

2

[ 0.0313 0.7405 0.5839 0.3311]
[ 0.2694    0.7689   0.5779   0.0478]

sl

sl

x
x

m
 




  


 

 

 
By using the slow vector scheme, we will 

measure lower dimensional manifold (LDM). 
 
Results and Discussion 
 

By solving (10) in quasi equilibrium grid 
nodes, we start measuring from equilibrium 
point 0

eqc c . Adding a shift vector 
phc we first 

move towards the left branch 1p pc c   and get new 

grid points 1p p pc c hc   . Similarly, we impose 

the condition of 1p pc c   in order to calculate new 
grid points of the right branch. The process of 
obtaining a new grid point will continue until we 
reach its maximum and minimum values as 
explained in Fig. 3. 

On the other side, we sketch the graph of 
our reduced systems with respect to time and 
observe steady state behavior in Fig. 4 along with 
their convergence towards its equilibrium after 
starting with different initial points Fig. 5. 
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Fig. 3: D-SQE grids measurement starting from 
the equilibrium point (square) to its right 
and left branch whereas 2 310ò and  1

slm x  
is taken. 
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Fig. 4: The figures shown here represent the 
concentration Ci versus time relationship 
for the synthesis of CO2. The steady state 
behavior is observed in the case of its 
reduced form (c1, c4), (c2, c3), (c3, c4) from 
the system (2). Note that after completing 
the transition period, the system moves 
towards steady state or equilibrium. 
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Fig. 5a: Phase flow of the solution trajectories (in 

its reduced form 1 4,c c ) near the 
equilibrium point (square) is observed 
after starting through different initial 
points. 
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(b) 
 
Fig. 5b: An approximated SQEM (solid line) 

passes through the equilibrium point 
(square), which gives the idea of LDM, 
where the phase flow of the solution 
trajectories (in its reduced form 

1 4,c c ) 
approaches the equilibrium point and then 
it moves along it. 

 
Now, the sketch of our problem gives a 

clear view of the manifold based on slow motion 
assessment 

slow  that according to the initial 
condition, the system moves to the neighborhood 
of the manifold and then it moves along the 
manifold [6]. A sub-manifold    defined in 
some domain will be invariant if its solution 
trajectory ( )c t  starting on it 0( )c t   never leaves 
the system throughout its time 

0t t  while moving 
along ( )c t  [13, 14]. 
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Although our initial approximation is 
away from the actual (not exact) curve, this error 
can be removed by refining the solution curve. 
Therefore, we apply the MIG and get the refined 
curve Fig. 6. 
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Fig. 6: Initially approximated SQE-grids are first 

refined with the MIG by keeping 
2 310   and started from equilibrium. 

 
Now, the initially approximated solution, 

given by SQEM, is refined by the MIG (Fig. 6), 
but still, we cannot claim that this is the final or 
the exact solution curve; therefore, we will refine it 
further. But it is still unclear how long we can go 
for it. In our case (1), we get an invariant curve 
after refining the initial solution curve three times 
Fig. 7a. On the other side, we have observed that 
the method, defined by Mass and Pope [15-17] 
(Intrinsic low dimension manifold ILDM) and 
applied by many authors [18-20] based on slow 
eigenspace, will find out the best solution in its 
first calculation Fig. 7b.  
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Fig. 7a: An invariant manifold has been measured 
by refining (with MIG) the initial 
approximated SQEM three times.  
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Fig. 7b: The initial curve is measured by the 

method of intrinsic low dimensional 
manifold starting from the equilibrium 
point on both sides. 
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Fig. 8a: Error Analysis (EA) of the measured 

curves given by MIG shows the variation 
in grid points during its first, second and 
third refinements. 
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(b) 
 
Fig. 8b: During the measurement of the lower 

dimensional manifold with respect to 
ILDM, the absolute eigen values at each 
grid point have been plotted with respect 
to time. 
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Table-1: The above table shows the difference 
(positive) between the initial (I) and refined (R) 
values of the eight grid point, which are presented 
in Fig.8a. 

Fig. 8a. |I-R1| |I-R2| |I-R3| 
1 0.0242 0.0268 0.0247 
2 0.0216 0.0239 0.0216 
3 0.0190 0.0207 0.0186 
4 0.0164 0.0178 0.0157 
5 0.0140 0.0150 0.0130 
6 0.0116 0.0122 0.0101 
7 0.0094 0.0095 0.0077 
8 0.0073 0.0072 0.0053 

 
Higher Dimension 
 

Now, after measuring an invariant curve, 
we extend the idea for the higher dimensional 
manifold. This means we have to add more 
number of progress variable (chemical species). 
The idea is similar to the procedure adopted for 
one dimensional curve measured within the first 
slowest eigen spaces, while for two dimensional 
curves, the second slowest eigen space must also 
be taken into account. 
 

Therefore, the procedure starts from the 
equilibrium point and divides into two subsequent 
processes. Initially, the system (10) was resolved 
for 

1 1
slm x  and an invariant curve is obtained after 

being refined at each grid point shown in Fig. 9a. 
Then in the second step, we solve the system again 
but keeping 

22
slm x  over the refined grid point of 

the 1D curve as shown in Fig. 9b. In both the 
cases, we take 2 310  . In the same manner, this 
idea is further extendable to higher dimensions. 
 

 
 

(a) 
 
Fig. 9a: The 1D, LDM curve is further extended 

to 2D with the addition of other progress 
variable passing through equilibrium 
point.   

 
 

(b) 
 
Fig. 9b: For 2D grid construction, we measure the 

LDM at each grid point of the 1D curve. 
 
Conclusion 
 

In this paper, we have presented the idea 
to measure a low dimensional manifold for the 
system of complex chemical reaction through 
analytical and computational techniques. The 
model reduction is done through best available 
modern techniques (SQEM, ILDM) along with the 
comparison of their results. Although the initial 
curve (i.e. SQEM) is far away from the exact 
solutions, we are able to get an invariant solution 
curve through proper algorithm and refinement 
with MIG. While doing error analysis of each grid 
point, we are able to see the refinement at each 
step. Our construction strategy is based on a 
geometrical approach depending on finding and 
examining the dynamic behaviour of all the 
induced (or participate) species in the system. By 
using the same approach, we are able to explain 
the behavior of the solution trajectories near the 
equilibrium point and their approach towards and 
after the equilibrium. In the end, we have added a 
new progress variable to show that in a complex 
system, required dimensional curves can easily be 
constructed. By combining all the results, we have 
shown how the reacting species behave in the 
whole mechanism. 
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