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Summary: A purified raw montmorillonite and hydroxy-aluminum pillared montmorillonite have been 

prepared from a natural bentonite from Maghnia, Algeria. These materials have been analyzed by X-ray 

fluorescence spectroscopy, X-ray diffraction, Infrared spectroscopy and nitrogen adsorption-desorption 

measurement. The pillared montmorillonite provided a certain increase of interlayer basal spacing and 

BET surface area and consequently the improvement of its capacities adsorption and decolorization of 

Methylene Blue. The adsorption properties of these materials were studied as a function of contact time, 

solution pH, initial Methylene Blue concentration and temperature. The adsorption kinetics and isotherms 

were well fitted by pseudo-second order and Freundlich models, respectively.  In addition to that, 

thermodynamic studies showed an exothermic and a spontaneous process.   
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Introduction 

 

Organic dyes play important role in various 

applications. Synthetic Organic dyes discharges pose a 

great problem for the environment and human health as 

these latter are generally non-biodegradable [1-3]. 

Among different types of dyes, Methylene blue (MB) is 

a basic dye having many uses such as dyeing industry 
[4]. MB discharges in water lead to disagreeable color 

and consequently decrease sunlight penetration [5]. MB 

can cause some harmful effects on the human health 

such as eye burns, convulsions, and skin irritation. 

Moreover, it has thermal and light stabilities, complex 

structure, and low biodegradability [6]. In that regards, it 

was necessary to treat the MB effluents before throwing 

in aquatic environment.  

 

Various methods were used for wastewater 

treatment including chemical [7], biological [8], 
advanced oxidation process [9] and physical [10, 11]. 

Among these methods, adsorption remains a relatively 

used technique and easily to implement because its 

availability, low cost, and high efficiency [12, 13]. In 

recent years, there are many research focus on 

developing new adsorbents for efficient removal of MB 

from aqueous solution such as graphene oxide [14-18], 

nanotubes [19], nanocomposite [20-22], metal oxide 

[23-25], bioadsorbents [26–29], and activated carbon [4, 

30-33]. Activated carbon has been the most widely used 

because of its high adsorption capacity of organic 

matter. Nevertheless, this adsorbent has a higher cost 
and remains difficult to regenerate [34]. The search of 

another effective and less expensive adsorbent is 

therefore interesting. In this context, the use of clay 

materials is of great interest because of its low cost, 

abundance in nature and effectiveness [35]. 

 

Clays materials are classified in various types 

such as kaolinites, palygorskites, chlorites, and smectites 

[36]. Montmorillonite belongs to smectite and has been 
widely studied for its capacity to adsorb synthetic dyes 

[37-44]. However, raw bentonites usually exhibit small 

surface area due to the strong restack of layers, limiting 

their applications in dye removal [45]. The inorganic 

cations (e.g., Na+ and Ca2+) can be replaced with 

cationic surfactants or polycationic species, and the 

resulting materials are regarded as organobentonite or 

pillared bentonite, respectively [46].  

 

Various hydroxymetal polycations have been 

employed to synthesize pillared bentonite, e.g., 
hydroxyaluminum, hydroxyzirconium, hydroxyiron, 

hydroxytitanium, and hydroxychromium [47-54]. 

Among these polycations, Al13 has the most popularity 

because of its keggin structure, high molecular weight, 

and high positive charge [55]. Pillared bentonite 

improves the removal efficiency of heavy metals [49, 

56-63], Oxyanions [64-69], organic contaminants [64] 

and dyes [70-73]. So far, there are only two reports on 

the use of Al-pillared bentonite as adsorbent for the 

removal of Methylene Blue from aqueous solutions [74, 

75]. 

 
The main objective of this work was to prepare 

hydroxy-aluminium pillared montmorillonite using 

Algerian bentonite. This new material was characterized 

by X-ray fluorescence spectrometry (XRF), X-ray 
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diffraction (XRD), Fourier transform infrared 

spectroscopy (FTIR) and nitrogen adsorption-

desorption. The MB was chosen as adsorbate for its 

known strong adsorption onto materials. The adsorption 

of MB onto hydroxyl-aluminum pillared 
montmorillonite, including effects of contact time, 

solution pH, adsorbent dosage, initial MB concentration 

and temperature, was investigated by static adsorption 

experiments. We also studied the kinetics, isotherms and 

thermodynamics of adsorption. 

 

Experimental  

 

Materials and chemicals   

 

The raw bentonite used in this study was 

obtained from deposits of Maghnia in western Algeria. 
It was purified by a method reported elsewhere [76]. 

The obtained fraction with a particle size < 2 µm were 

referred to as Na-Mt and employed in the pillaring 

process.  

 

The dye MB and all chemicals (NaCl, Na2CO3, 

AlCl3.6H2O, NaOH, H2SO4) with the highest purity 

available, were obtained from Biochem Chemopharma 

company, France and used as received. All the solutions 

were prepared using distilled water. Chemical structure 

of the MB is shown in Scheme. 1. 
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Scheme-1: Molecular structure of MB. 

 

Preparation of hydroxy-aluminum pillared 

montmorillonite 

 

The first and main step in the preparation of 

hydroxyl-aluminum pillared montmorillonite was the 

preparation of the pillaring solution. The pillaring 

solution of hydroxyl-aluminum oligomeric cations 

([Al13O4(OH)24(H2O)12]7+) was prepared following the 

procedure previously reported by Wang et al [77, 78]. It 

consists of addition drop by drop of  Na2CO3 solution 
(0.4 mol/l) to AlCl3·6H2O  solution (0.2 mol/l) under 

vigorous stirring at 80°C in order to obtain a OH–/Al3+ 

molar ratio of 2.4. The resulting solution was stirred at 

80°C for 2 h, and then aged for 24 h at room 

temperature. The second step in the preparation of 

hydroxyl-aluminum pillared montmorillonite was the 

intercalation by adding the pillaring solution to the water 

suspension of Na-Mt (1wt %) at 80°C under vigorous 

stirring up to reach an Al13
7+/Na-Mt ratio of 10 mmol/g. 

The mixture was stirred for an additional 2 h at 80°C 

and subsequently aging at 60°C for 24 h. The product 

was centrifuged, followed by washing with distilled 
water and the solid was dried at 80°C and ground into 

powder. This pillared sample was noted as OH-Al-Mt. 

 

Characterization methods 
 

The X-ray diffraction patterns were performed 

employing a Philips X´Pert MP diffractometer with Ni-

filtered CuKα radiation using a powder sample. 

Chemical composition of the samples was determined 

by X-ray fluorescence spectrometry using a model 

Philips Magix Pro spectrometer with X-ray tube and Kα 

radiation for Rh. Spectrometer contains two flows: Ar + 
Methane and scintillation flow. Fourier transform 

infrared spectroscopy of the samples were measured 

using a “Spectrum Two” (Perkin Elmer, Inc.) 

spectrometer.  
 

The spectra range for KBr is 8300 – 350 cm-

1 for the optic system and between 6000 and 550 cm-

1 for ZnSe mesures with a resolution of 2 cm−1.  Surface 

area and pore size distribution were determined by 

using N2 as the sorbate at 77 K in a static volumetric 

apparatus (Micrometrics ASAP 2010 sorptometer). 

Samples (ca 0.2 g) were outgassed prior to use at 453 K 

for 16 h under vacuum (6.6 * 10-9 bar). Surface areas 

were calculated employed the BET equation, while pore 
volumes were determined from N2 uptake at a relative 

pressure (p/p0) of N2 equal to 0.99. The microporous 

surface and micropore volume were determined 

employing Horvath Kawazoe (HK) method [79]. 

Scanning electron microscopy (SEM) images of 

samples were obtained using a Quanta-650 scanning 

electron microscope (FEI). 
 

Adsorption experiments 
 

Batch experiments were carried out in water 
bath shaker (Heidoph Unimax 1010) using a glass flasks 

by adding 1 g/l of Na-Mt and OH-Al-Mt in 25 ml of 

initial concentration 100 mg/l of MB solutions and 

thermostated at 299 ± 1 K. The adsorption properties of 

these materials were studied as a function of contact 

time (10 - 420 min), solution pH (2 - 10), adsorbents 

dose (5 - 200 mg) and temperature (20, 30, and 50°C) 

for optimizing the operating conditions. Samples of 4 ml 

were withdrawn and centrifuged to separate the 

adsorbent from the solution. The supernatant was 

analyzed by UV–Vis spectrophotometer (Genesys-10) 
at the maximum wavelength of absorption λmax = 665 

nm. The MB concentration of each experiment was 

carried out with calibration curves obtained by plotting 

the optical densities as a function of MB concentration.  
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The pH of MB solutions was adjusted using 

0.1 mol/l H2SO4 and 0.1 mol/l NaOH aqueous solutions, 

and was measured using a pH meter (AD 1030). 

Adsorption isotherm experiments were carried out by 

adding 1 g/l of adsorbents in 25 ml of MB solutions at 
different concentrations (4 - 150 mg/l) for desired 

contact time and pH. The amounts of adsorbed MB in 

the equilibrium per mass unit of the sample, qe (mg/g), 

and the removal efficiency of the MB, E (%), were 

calculated according to Eqs. (1) and (2), respectively: 

 

   (1) 

 

   (2) 
 

where C0 is initial concentration of MB (mg/l), Ce is 

equilibrium concentration of MB (mg/l), V is the 

volume of MB solution (ml), and m is the mass of 

adsorbent (mg). 
 

Results and Discussion 
 

Characterization of the materials  
 

The X-ray fluorescence data for the Na-Mt and 

OH-Al-Mt are reported in Table 1. As observed, the 

SiO2 content in OH-Al-Mt was significantly lower than 

that in parent clay Na-Mt. This fact is principally due to 
the higher Al2O3 content which clearly indicates the 

insertion of Al13
7+ into the interlayer spacing as pillars, 

although it is possible that it can be also settled in minor 

amounts over the montmorillonite sheets. Table 1 also 

illustrates that the amount of Na2O in the OH-Al-Mt 

was significantly decreased after pillaring processes. 

This result is in agreement with previous finding [55, 

80-81], denoting that this decrease is mainly due to the 

cation exchange between Na+ and Al13
7+. 

 

X-ray diffraction patterns and relative basal 

spacing of Na-Mt and OH-Al-Mt are illustrated in Fig. 1 

and Table 1. The angle reflections due to the basal d001 

reflection of silicate layers allowed us to obtain 

information about the effect of intercalation on the basal 

spacing of the clay. In particular, it can clearly be seen 

that the diffraction peak at 2θ = 7.04° of Na-Mt is 

shifted to lower angle around 4.78° in OH-Al-Mt. This 

shift clearly indicates an enlargement of the basal 

spacing of the clay as a consequence of the pillaring 

process (from 12.5 Ǻ of the parent clay to about 18.5 Ǻ 
of the OH-Al-Mt, see in Table 1). This value confirms 

values previously reported for the used Al13 as a 

pillaring species [73, 82, 83]. The observed enlargement 

of the basal spacing is due to the intercalation of Al13
7+ 

cations between montmorillonite layers. Fig. 1 also 

shows that the (001) peak of OH-Al-Mt was lower 

intensity than that of the starting Na-Mt in agreement 

with previous results obtained by Tepmatee and 

Siriphannon [80].  
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Fig. 1: XRD patterns of Na-Mt and OH-Al-Mt. 
 

The textural properties of the samples are 

shown in Table 1. It is clear that the BET surface area 

and pore volume of OH-Al-Mt were greater than those 
of Na-Mt, which are in agreement with results 

previously reported [55, 73, 75, 77, 78]. Micropores are 

known to contribute to most of the adsorption capacity 

[84, 85]. After modification with Al13, the micropore 

surface area and micropore volume increased to 127.3 

m2/g and 0.07 cm3/g, respectively. These results could 

be assigned to the insertion of Keggin-Al13 into the 

interlayers of the montmorillonite. 
 

The nitrogen adsorption desorption isotherms 

for the samples are presented in Fig. 2a. The isotherms 

shapes are composite type I and type IV isotherms. 

Similar shapes have been reported for other pillared 

materials [86, 87]. At low relative pressures (P/P0 < 0.5), 
isotherms were characterized by type I isotherms 

according to the Brunauer, Deming, Deming and Teller 

classification (BDDT) [88], which is characteristic of 

microporous systems [89]. Note that, a significant 

higher amount of adsorbed nitrogen molecules were 

achieved for OH-Al-Mt compared to the Na-Mt, 

indicating the opening of the pore structure of the clay 

after the pillaring process and so, the improvement of its 

adsorption capacity. On the other hand, the plot of 

samples isotherms at higher P/P0 values would 

correspond to the type IV, which is characteristic of 

materials having relatively large pores. Moreover, the 
presence of a hysteresis loop in the isotherms (type H3 

according the International Union of Pure and Applied 

Chemistry (IUPAC) classification [89], indicates some 

degree of mesoporosity (mesoporosity arises from 

stacking defects inherent in the clay itself, as evidenced 

by the hysteresis loop seen in the adsorption isotherm of 

the starting clay). The hysteresis loop, characteristic of 

materials with slit-like pores, is consistent with the 

structure expected for materials prepared by expanding 

a laminar structure. 
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Table-1: Chemical composition (wt%), basal spacing (d001) and textural properties of Na-Mt and OH-Al-Mt. 
Adsorbent Chemical composition (Wt%) Basal spacing 

d001 (Ǻ) 

Textural properties 

Al2O3 SiO2 Na2O BET surface area 

(m2/g) 

Micropore Surface area 

(m2/g) 

Micropore volume  

(cm3/g) 

Pore volume 

(cm3/g) 

Na-Mt 17.75 58.52 2.72 12.5 59.3 13.0 0.009 0.11 

OH-Al-Mt 25.26 49.68 0.17 18.5 182.9 127.3 0.069 0.18 

 

 
 

Fig. 2: Nitrogen adsorption-desorption results: a) isotherms and b) micropore size distribution (HK method). 

 

The micropore size distribution curves (Fig. 

2b) were calculated from Horvath-Kawazoe (H-K) 

method. The primary peaks at about 5.2 - 5.4 Ǻ in the 

curves of samples correspond to the main population of 

pores, but with a continuous distribution of pores in the 

range of 5.4 - 11 Ǻ, which are in agreement with results 
previously reported [78].  

 

The FTIR spectra of Na-Mt and OH-Al-Mt in 

the range of 4000–400 cm-1 are shown in Fig. 3. The 

band at about 3617 cm−1 is assigned to the stretching 

vibration of octahedral OH groups, which are attached 

to Al3+ or Mg2+ [90]. The absorption peak at 1634 cm−1 

is attributed to OH deformation of interlayer water. The 

intensity of this band changed, which could be 

explained due to some changes of the H2O content with 

the replacement of the intercalated Al polycations [91]. 

The most intense band at 990 cm−1 shifted to 1003 cm−1 

near the Si-O stretching vibration in the tetrahedral 

sheet, the intensity also decreased from Na-Mt to OH-

Al-Mt. This finding is in agreement with other 

investigations obtained by Zhao et al [55] that 

demonstrated that Al13 species were intercalated into the 

interlayers of the montmorillonite. The band situated at 

515 and 463 cm-1 characterize the montmorillonite and 

correspond to the Si-O bending vibrations.  

 

SEM was used to study the changes in 

morphology of Na-Mt and OH-Al-Mt (Fig. 4). It can be 

seen that the Na-Mt is constituted of fine particles and 

the morphologies of these particles indicated that the 

sample had the lamellar structure (Fig. 4a). After 

modification with Al13, the OH-Al-Mt is composed of 

fine and large particles, explaining that some of lamellas 

were disposed to form a stacking structure (Fig. 4b), 
which was consistent with extended the interlayer space, 

increased the surface area and consequently increased 

adsorption capacity. 
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Fig. 3: FTIR spectra of Na-Mt and OH-Al-Mt. 
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(a)                                                                                (b) 
 

Fig. 4: SEM images of Na-Mt (a) and OH-Al-Mt (b) 
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Fig. 5: Effect of contact time on the adsorption of 

MB (MB: 100 mg/l, adsorbent dose: 1 g/ l). 

 

Adsorption experiments  

 

Effect of contact time and adsorption kinetics 

 
Several studies were established the effect of 

contact time on the amounts of adsorbed dye onto a 

fixed adsorbent mass [92-95]. The effect of contact 

time on the adsorption capacities of Na-Mt and OH-

Al-Mt for MB was illustrated in Fig. 5. As observed, 

the rate of adsorption was fast at initial 30 min due to 

the adsorption of MB on the external surface of 

adsorbents. After that, slow adsorption occurred that 

referred to the MB diffused into the pores and was 

absorbed by the internal surface of the adsorbents. 

The last stage reflects the adsorption equilibrium of 
adsorbents within 120 min and the final adsorption 

capacities were calculated to be about 67 mg/g and 

90 mg/g for Na-Mt and OH-Al-Mt, respectively. 

Subsequently, no further adsorption was observed. 

Hence, the optimum contact time was chosen as 120 

min. However, the pillared clay has a higher 

adsorption capacity than the Na-Mt. It can be related 

to the pillaring process which results in materials 

with altered chemical composition, extended the 

interlayer space, increased the surface area and 

consequently increased adsorption capacity. 

Additionally, Al13 had a higher positive charge (+7) 

than Na (+1), leading to the enhancement of 

adsorption performance of the modified 
montmorillonite [55]. 

 

The adsorption kinetics is an essential 

feature on the investigation of the pollutants 

decolorization. In order to investigate the adsorption 

kinetics and mechanism of MB adsorption on 

adsorbents, pseudo-first order and pseudo-second 

order models were used to fit the kinetics process. 

The pseudo-first-order equation in linear form [96] is 

given by: 
 

 (3) 
 

and the expression of the linear form of the pseudo-

second-order model [97, 98] is given as: 
 

 (4) 
 

where qe and qt are the amounts of MB (mg/g) 

adsorbed on the adsorbent at equilibrium and at a 

given time t (min), respectively. k1 (min-1) and k2 

(g/mg.min) are the pseudo-first-order and the pseudo-
second-order rate constants, respectively. 
 

Table 2 illustrates the kinetic parameters and 

correlation coefficients values. It was found that of 

the both adsorbents, the pseudo-second-order model 

fitted well the experimental results with R2 = 0.99. 

Similar reports are available in literature [4-6, 18, 29, 

35, 73, 99-108].  
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Table-2: Adsorption kinetics parameters of MB on Na-Mt and OH-Al-Mt. 
Adsorbent Pseudo-first order model Pseudo-second order model 

qe (mg/g) K1 (min-1) R2 qe (mg/g) K2 (g/mg. min) R2 

Na-Mt 64.71 0.044 0.986 71.42 1.16*10-3 0.996 

OH-Al-Mt 55.46 0.032 0.976 100 1.44*10-3 0.999 
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Fig. 6: Effect of solution pH on the adsorption of 

MB (MB: 100 mg/l, adsorbent dose: 1 g/l, 

contact time: 120 min). 

 

Effect of solution pH  

 

The pH changing of the aqueous solution 

plays an important role in the adsorption process 

[93]. The effects of solution pH on adsorbents were 
examined over the pH range of 2-10 (Fig. 6). It is 

clear that the adsorption of MB by Na-Mt was not 

remarkably affected by pH. Similar results have been 

reported for the sorption of cationic dye by 

montmorillonite and palygorskite [109-111]. For OH-

Al-Mt, the data indicate the removal of MB dye 

increased with increasing pH solution up to pH 8. 

However, the MB uptake capacities were not changed 

from pH 8 to 10. Point of zero charge (pHpzc) is an 

important factor which indicates the adsorbent 

surface charge [112]. Adsorbents have a negative 
charge on their surface when pH solution > pHPZC, while 

they have a positive charge when pH solution < pHPZC 

[74]. The pHpzc of the OH-Al-Mt was found to be 

4.5. Since MB existed as cations (Scheme 1), at pH < 

4.5, the surface of the OH-Al-Mt becomes positively 

charged, resulting in electrostatic repulsion due to the 

same positively charged MB molecules. Also, there 

was competition between protons and MB ions for 

the available adsorption sites. In contrast, at pH > 4.5, 

the negatively charged surface of adsorbent favors 

uptake of cationic dye MB due to increased 
electrostatic attraction. Furthermore, there was a 

certain adsorption capacity of MB for the entire pH 

region and can be due to (i) hydrogen bonding 

between –N of MB and surface –OH groups or 

hydroxide groups of aluminum polycations 

proceeding in interlayer space, (ii) interactions 

among π electronic clouds of MB and cations such as 

Na+, Al13
+7 present on the surface of the clays and 

(iii) hydrophobic character which favors the 

adsorption of MB with respect to water. Similar 

results were obtained by previously reports [4, 33, 99, 

113-115]. The pH of wastewater is 6-9 and the 

natural pH of the MB solution is 6.1. Also, we have 

slightly difference between the MB removal at pH = 

6 and pH = 8 (90 % at pH = 6 and 93% at pH = 8). 

Therefore, we retained the pH solution without 
adjustment in the rest of adsorption experiments 

 

Effect of adsorbent dose 
 

In order to determine a minimum adsorbent 

amount that is economically realizable in wastewater 

treatment process, we have investigated the 

efficiency of sorbent dosages on the elimination of 

MB. Fig. 7 showed that the % removal of MB 
increased from 53% to 67% and 78% to 90% for Na-

Mt and OH-Al-Mt, respectively, as adsorbent amount 

increased from 0.2 to 1 g/l. This fact can be assigned 

to increase in the adsorptive surface area and 

adsorption sites that can take up MB cations become 

more available. Subsequently, the removal rate did 

not affected by further increase in adsorbent dose, 

indicating saturation state. When the adsorbent 

dosage is low, the dye ions can easily access the 

adsorption sites by contrast when the adsorbent 

dosage is high, the dye ions can hardly access the 

adsorption sites until the attainment of equilibrium 
[116]. The percentage removal for Na-Mt was lower 

than that for modified clay, indicated that the 

adsorption ability of OH-Al-Mt was dramatically 

enhanced by Al13 modification. According to this 

experiment, 1 g/l adsorbent dose (optimal adsorbent 

dosage) was chosen for the successive experiments.  
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Fig. 7: Effect of adsorbent dose on MB removal 
(MB: 100 mg/l, contact time: 120 min). 
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Adsorption isotherms 

 

The adsorption isotherms were carried out at 

different initial concentrations (4 to 200 mg/l) during 

120 minutes at room temperature and adsorbent dose 
1g/l. The isotherms are formed by plot adsorbed 

amount of MB versus equilibrium concentration. The 

Fig. 8 depicts the adsorption of MB by Na-Mt and 

OH-Al-Mt. It can be seen that for both adsorbents, 

the amount of Methylene Blue adsorbed increases 

with an increase in initial adsorbate concentration, 

due to the increased driving force of the 

concentration gradient [120]. A similar effect has 

been observed with previously reported [18, 105]. 

The OH-Al-Mt exhibited higher adsorption capacity 

than the Na-Mt in same operating conditions, due to 

the altered chemical composition, enlarged the 
interlayer space and their higher BET specific surface 

area.  
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Fig. 8: Adsorption isotherms of MB onto Na-Mt 
and OH-Al-Mt (contact time: 120 min, 

adsorbent dose: 1 g/l). 

 

In order to comprehend the interactions 

between MB and the adsorbent, adsorption isotherm 

models, including the Langmuir [118], Freundlich 

[119] and Temkin [120] models were tested. The 

linear forms of the Langmuir, Freundlich and Temkin 

models can be expressed using Eqs. (5), (6) and (7), 

respectively: 

 

  (5) 

 

   (6) 

 

    (7) 

 

where qm (mg/g) and KL (l/mg) are Langmuir 

constants respectively related to the maximum 

adsorption capacity and the adsorption energy. KF 

and n are Freundlich constants respectively related to 

the adsorption capacity ((mg/g)(l/mg)n ) and the 
adsorption intensity. BT = RT/b, T is the temperature 

(K), R is the universal gas constant (8.314 J/mol K), 

and b is the Temkin constant related to heat of 

adsorption (J/mol).  

 

The fitted constants for Langmuir, 

Freundlich and Temkin isotherm models at room 

temperature are summarized in Table-3. The 

coefficient of determination (R2) values in the 

Freundlich isotherm model were above 0.99, which 

were higher than that for the Langmuir and Temkin 

isotherms, indicating a very good mathematical fit by 
this model.  Similar results have been reported for the 

adsorption of Basic Fuchsin, Basic Green and Acid 

Turquoise Blue A [73] by hydroxy-aluminum 

pillared bentonite, direct orange 34 [121] by 

halloysitic clay, methylene blue [113] by zeolite–

activated carbon composite. Generally, the value of n 

in the range of 2–10 indicates good, 1–2 moderately 

difficult and below 1 poor adsorption characteristics 

[44]. The measured 1/n was below to the unit, which 

means the adsorption was favorable. In addition to 

that, adsorption of any contaminant is considered 
favorable (0 < KL < 1); unfavorable (KL > 1), linear 

(KL = 1) and irreversible (KL = 0) [44]. The measured 

KL were below to the unit, indicated the favorable 

adsorption of MB onto both adsorbents.  

 

For comparison, results obtained from the 

literature on Methylene Blue monolayer adsorption 

by various clays are summarized in Table 4. It is seen 

that the OH-Al-Mt shows a high affinity for MB 

molecules and the qm of the Langmuir adsorption 

isotherm is much higher to that in previous results 

[74, 75, 103, 106, 114, 122-131]. 
 

Effects of temperature and thermodynamic studies 

 

Temperature is an important parameter for 

the adsorption process. A plot of the MB uptake as a 

function of temperature (293, 313 and 333 K) is 

shown in Fig. 9. The adsorbed amounts of MB were 

decreased from 67.36 to 64.9 mg/g and 90.58 to 

87.36 mg/g for Na-Mt and OH-Al-Mt, respectively, 

as temperature increased from 293 K to 333 K. This 

result shows that adsorption onto the adsorbents is 
favorable at low temperature and thus suggesting that 

the adsorption process is exothermic. According to 

[104], the dye molecules escape from the solid phase 

to the solution with increase the temperature.  
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Table-3: Isotherm model parameters for adsorption of MB onto Na-Mt and OH-Al-Mt. 
 

Sample 

Langmuir Freundlich Temkin 

qm 

(mg/g) 

KL 

(l/mg) 

R2 1/n KF 

(mg/g) 

R2 
 

KT 

(l/mg) 

R2 

Na-Mt 111.11 0.024 0.95 0.89 2.96 0.998 22.4 0.56 0.87 

OH-Al-Mt 142.86 0.30 0.91 0.44 28.97 0.99 14.69 29.75 0.80 

 

Table-4: Comparison of monolayer adsorption of MB 

onto various clays. 
Adsorbent Adsorption 

capacity (mg/g) 

Reference 

Kaolin 52.76 [122] 

Kaolinite 77 [123] 

Sepiolite 57.38 [124] 

Sepiolite 110 [125] 

Clay 6.3 [126] 

Raw ball clay 34.65 [114] 

Modified Ball clay 100 [114] 

Spent activated clay 127.50 [127] 

Zn-PILC 27 [74] 

Montmorillonite 110 [128] 

Tsu-Mont 73 [75] 

Chitosan/bentonite 95.24 [129] 

Carbon/montmorillonite 

composites 

82.6 [130] 

Montmorillonite modified with 

iron oxide 

69.11 [106] 

Fe3O4/Mt 106.38 [103] 

Mt/CoFe2O4 composite 97.75 [131] 

Al-PILC 21 [74] 

Alumina-pillared clays 40 [75] 

Na-Mt 111.11 [This work] 

OH-Al-Mt 142.85 [This work] 
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Fig. 9: Effects of temperature on the MB adsorption 

capacity of Na-Mt and OH-Al-Mt. 

 

The thermodynamic behavior of the 

adsorption of MB onto the adsorbents were defined 

by Gibb’s free enthalpy (ΔG˚: kJ/mol), enthalpy 

(ΔH˚: kJ/mol) and entropy (ΔS˚: J/mol.K) and were 
calculated using the following equations [104] 

 

  (8) 

 

   (9) 

 

where m is the adsorbent dose (1 g/l), Ce is the 

equilibrium concentration (mg/l) of the MB in 

solution, qe is the amount of MB adsorbed at 
equilibrium (mg/g), R is the gas constant (8.314 

J/mol K) and T is the temperature (K).  

 

The values of ΔH˚ and ΔS˚ are calculated 

from the slope ((  ) and the intercept (  ) of 

the plots of ln (qe/Ce) against 1/T (figure not shown). 

The ΔG˚ values were calculated using Eq. (9). The 

determined values of the thermodynamic parameters 

are given in Table 5. The values of ΔG° were found 

to be negative under various temperatures which 

indicated the favorable nature of MB adsorption onto 

adsorbents and spontaneous process under the 

experiment condition. The negative value of ΔH° 

suggests that the adsorption of MB onto adsorbents 
was exothermic and the negative ΔS° value can be 

attributed to the decline in the disorder at the 

solid/solution interface. Generally, when the ΔH° < 

25 kJ/mol, the adsorption is physical and when ΔH° 

is in the range 40–200 kJ/mol, the adsorption is 

chemical [99]. In this study, ΔH° is less than 25 

kJ/mol and thus adsorption is physical.  

 

Table-5: Thermodynamics parameters of MB 

adsorption onto the Na-Mt and OH-Al-Mt. 

 

Conclusions 

 
In this work, the removal of MB from water 

solutions was investigated by employing as 

adsorbents a purified raw montmorillonite (Na-Mt) 

and hydroxy-aluminum pillared montmorillonite 

(OH-Al-Mt). OH-Al-Mt had a good ordered layers 

structure with insertion of Al13
7+ cations, which 

caused an increase in the clay spacing. Its specific 

surface area is about three times larger than that of 

the parent Na-Mt due principally to the creation of a 

remarkable microporous network. 

 
The optimized conditions for MB dye 

removal by adsorbents were confirmed at 1 g/l 

adsorbent dosage, equilibrium time 120 min, natural 

pH (6.1) and decreased with the increase of 

Adsorption 

system 

ΔH˚ 

(kJ/mol) 

ΔS˚ 

(J/mol.K) 

ΔG˚ (kJ/mol) 

   293 K 303 K 323 K 

Na-Mt -2.96 -4.07 -1.77 -1.74 -1.65 

OH-Al-Mt -8.76 -11.14 -5.50 -5.39 -5.16 
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temperature. The adsorption of Methylene Blue onto 

both clays obeyed pseudo-second-order kinetics. The 

pillared clay has a higher adsorption capacity than the 

Na-Mt. The best equilibrium adsorption isotherm fit 

was obtained with the Freundlich model. 
Thermodynamic studies showed that the adsorption is 

spontaneous and exothermic process.  
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