Among all psychotropic alkaloids, nicotine is more addictive, carcinogenic and capable of causing many health problems. This work is based on the development of highly robust, cheap, reliable, selective and sensitive nicotine imprinted graphene oxide nanocomposite (ImpGO nanocomposite) based optical sensor for determination of nicotine in human plasma. The ImpGO nanocomposite has been thoroughly characterized using different techniques i.e. FT-IR, SEM, TEM, Raman, etc. These characterizations revealed that ImpGO nanocomposite is comprised of single layer of graphene oxide successfully modified with imprinted polymer. The synthesized material was utilized to selectively determine nicotine using UV-vis spectrophotometer in BR buffer of 0.1 M at pH 3 and diluted human plasma. The effect of parameters such as buffer concentration, pH, amount of nanocomposite, etc on determination of nicotine using ImpGO nanocomposite were studied thoroughly. Thus, a sensitive optical method was developed for determination of nicotine in human plasma with linear range of 22-370 pM along with LOD and LOQ of 7 pM and 22 pM, respectively. The selectivity of sensor was evaluated using homologues of nicotine such as nicotine amide, caffeine and cotinine. The results obtained from biological samples showed that developed optical sensor is efficient in complex matrices of real sample.


Sehrish Qazi, Huma Shaikh, Ayaz Ali Memon, and Shahabuddin Memon