We study the optical properties of hydrogen passivated silicon, germanium and mixed Ge/Si core/shell quantum dots (QDs) using high accuracy Density Functional Theory (DFT) and time-dependent DFT (TDFT). We employ the hybrid DFT functional of Becke, Lee, Yang and Parr (B3LYP) in combination with good quality basis sets. As we have shown in our previous work, this combination is an accurate and computationally efficient way for such calculations. The mixed quantum dots, as would be expected, are more versatile and offer more possibilities for band gap engineering, with gap values (electronic and optical) between those of the corresponding Si and Ge dots. Our results support the quantum confinement theory for all three types of QDs.


Shanawer Niaz, Aristides D. Zdetsis, Manzoor Ahmad Badar, Safdar Hussain, Imran Sadiq and Muhammad Aslam Khan