The selective adsorption and capture of CO2 from post-combustion gases carries huge significance for the reduction of greenhouse effect. In this research, the computations of density functional are performed to investigate the CO2 selective adsorption of S-doped graphene in thrall to applied electric field (E-F). Introducing the applied E-F, the adsorption between S-doped graphene and CO2 is strong chemisorption, and CO2 can be effectively captured. Removing the applied E-F, the adsorption restores to physisorption and CO2 is easily desorbed. Therefore, the CO2 seize and clearing can be realized merely by controlling the E-F. Besides, the adsorption energy of N2 (H2O) on S-decorated graphene is positive when introduce the applied E-F. The results demonstrated that S-doped graphene can selectively adsorb CO2 from the post-combustion gases by controlling the E-F.

Jingyi Shan, Xiangling Wang, Junkai Wang, Shixuan Zhang, Qianku Hu and Aiguo Zhou