Exploring the therapeutic potential of organotin-based oxo-ethyl carbonodithioates, a series of organotin(IV) thiocarboamates (1-5) were synthesized with diverse alkyl and phenyl substituents. The chemical- composition, morphology, theoretical properties, and drug-DNA binding capabilities of the synthesized derivatives were performed by applying different characterization techniques like FT-IR, NMR (1H, 13C), AFM, DFT analysis, and UV-Vis spectroscopy respectively. The NMR data indicated six and four coordinated geometries, while the AFM results revealed smart surfaces concerning the grain size and root mean square (RMS) roughness, signifying catalytic and biocidal uses. The drug-DNA binding via intercalative mode of interaction with blue and red shifts was determined by using using UV spectroscopy. The in vitro biocidal capacity of selected complexes was evaluated against typical bacterial, fungal, cytotoxic, and leishmanial strains respectively. As a result of the surface and biocidal characterization, the synthesized complexes may be applied with greater potential in biomedical, pharmaceutical, infectious, catalysis, and cosmetics industries

Fatima Javed, Saqib Ali, Khurram Shahzad Munawar, Ali Haider, N. A. Shah and Z. Rashid