In this study, In Vitro antibacterial and antifungal activities of azo series based on transition metal complexes (Cu2+, Zn2+, Mn2+, Co2+ and Ni2+) with already our reported ligands named as; [(E)-1-(1, 3-dioxolan-2-yl)-2-phenyldiazene] (K-1), [(E)-1-(1, 3-dioxolan-2-yl)-2-(4-methylphenyl)diazene] (K-2), 2-[(E)-phenyl diazenyl]-1H-benzimidazole] (K-3), [(E)-1-(1, 3-dioxolan-2-yl)-2-(4-ethylphenyl)diazene] (K-4), and [(E)-1-(1, 3-dioxolan-2-yl)-2-(2-methylphenyl)-diazene] (K-5) were studied. FTIR 1H-NMR and mass spectrometric techniques were applied for interpretation of synthesized complexes. 4.05-4.07 ppm chemical shift appearance of azo group confirms azo coupling with transition metal complexes. N=N, C-H, C-N and C-O groups are also confirmed by FTIR which exhibited peaks at 1400-1500, 2090-3090, 1100-1180, 1010-1060 and 625-780 cm-1. Furthermore, mass spectroscopic data also gives strong indication for the synthesis of metal complexes. All the newly synthesized complexes were screened for their antibacterial and antifungal activities. Antibacterial and antifungal activity against S. aureus, E.coli and A.niger, A.ustus and C.albican at conc. 250 µg/ml showed excellent activity by K-1 complexes (Co2+, Cu2+, Ni2+), K-5 complexes (Zn2+, Mn2+, Cu2+), K-2 complexes (Co2+, Cu2+, Mn2+) and K-3 (Zn2+, Mn2+, Co2+, Cu2+) as compared to standard drug (Ampicillin). Hence, based on this study, it was concluded that these azo based complexes may act as a platform for designing more active antibacterial and antifungal agents.


Khalil Ahmad, Habib-ur-Rehman Shah, Areeba Ashfaq, Muhammad Ashfaq, Muhammad Kashif, Hafiza Ammara Naseem, Tariq Aziz, Sajidah Parveen and Hafsa and Imran Nazir