K-doped g-C3N4/SiO2composite (SiO2/K-CN) was synthesized by a facile thermal polymerization with potassium chloride, melamine and nano-silica as raw materials. The as-prepared SiO2/K-CN was characterized by various measures. The photocatalytic activity of SiO2/K-CN was tested via the photocatalytic degradation of tetracycline under visible-light irradiation. The results showed that the specific surface area of SiO2/K-CN catalyst was 28.16m2/g, which is larger than that of pristine K-doped g-C3N4. Both K-doping and silica-combination can reduce the recombination rate of photo-generated electrons-holes pairs and broaden the region of visible light-harvesting. Compared with the pristine K-doped g-C3N4 and composite SiO2/g-C3N4, SiO2/K-CN exhibits distinctly higher photocatalytic activity for degradation of tetracycline. The enhanced photocatalytic performance of SiO2/K-CN is attributed to the increased specific surface area and the synergistic effect of K-doping and silica-combination in both accelerating separation of charged carries and improving visible light-absorption. During photocatalytic degradation of tetracycline, superoxide radicals play the most important role, followed by holes.SiO2/K-CN complex has excellent stability and shows promising application in photocatalytic degradation of organic contaminants in water.

Min-keng He, Jin Zhang, Fang-yan Chen, Ke-keShu, Yu-bin Tang